根据这帖, 若平面$BPA$与$APC$垂直, 则$\cos(\angle BPC)=\cos(\angle BPA)\cos(\angle APC)$.
推广: 在四维空间中, 若超平面$BPAC$与$CPAD$垂直, 则$$\cos(\angle B–PA–D)=\cos(\angle B–PA–C)\cos(\angle C–PA–D)$$
其中$\angle B–PA–D$是平面$PAB$与$PAD$的夹角.
证明
建立直角坐标系: $P$为原点, $A(1,0,0,0)$, $C$属于$x_1x_2$-平面, $B$属于$x_1x_2x_3$-超平面, $D$属于$x_1x_2x_4$-超平面.
设$B(x,y,z,0),D(a,b,0,c)$. 不妨设$b^2+c^2=1$.(将$\vv{PD}$乘以一个标量, 命题不变)
在$x_1x_2x_3$-超平面中, 点$B$在平面$PAC$上的投影为$B'(x,y,0)$. 所以$B'(x,y,0,0)$.
在$x_1x_2x_4$-超平面中, 平面$PAD$的单位法向量为$\vv{PA}∧\vv{PD}=(1,0,0)∧(a,b,c)=(0, -c, b)$, 点$B'$在平面$PAD$上的投影为$B''(x,y-c^2 y,b c y)$. 所以$B''(x,y-c^2 y,0,b c y)$.
\begin{align*}
\vv{BB''}·\vv{PA}&=\left(0,-c^2 y,-z,b c y\right)·(1,0,0,0)=0\\
\vv{BB''}·\vv{PD}&=\left(0,-c^2 y,-z,b c y\right)·(a,b,0,c)=0
\end{align*}
所以$BB''$垂直于平面$PAD$, 所以$B''$是$B$在平面$PAD$上的投影.
$$\cos(\angle B–PA–D)=\frac{\S{PAB''}}{\S{PAB}}=\frac{\S{PAB''}}{\S{PAB'}}\cdot\frac{\S{PAB'}}{\S{PAB}}=\cos(\angle B–PA–C)\cos(\angle C–PA–D)$$ |