Proof
Let \(A\) be any normal upper triangular matrix. Since
$ {\displaystyle (A^{*}A)_{ii}=(AA^{*})_{ii},} $
using subscript notation, one can write the equivalent expression using instead the \(i\)th unit vector ($ {\hat {\mathbf {e} }}_{i} $) to select the \(i\)th row and \(i\)th column:
$
{\displaystyle {\hat {\mathbf {e} }}_{i}^{\intercal
}\left(A^{*}A\right){\hat {\mathbf {e} }}_{i}={\hat {\mathbf {e}
}}_{i}^{\intercal }\left(AA^{*}\right){\hat {\mathbf {e} }}_{i}.} $
The expression
$
{\displaystyle \left(A{\hat {\mathbf {e} }}_{i}\right)^{*}\left(A{\hat
{\mathbf {e} }}_{i}\right)=\left(A^{*}{\hat {\mathbf {e}
}}_{i}\right)^{*}\left(A^{*}{\hat {\mathbf {e} }}_{i}\right)} $
is equivalent, and so is
$ {\displaystyle \left\|A{\hat {\mathbf {e} }}_{i}\right\|^{2}=\left\|A^{*}{\hat {\mathbf {e} }}_{i}\right\|^{2},} $
which shows that the \(i\)th row must have the same norm as the \(i\)th column.
Consider $i = 1$. The first entry
of row 1 and column 1 are the same, and the rest of column 1 is zero
(because of triangularity). This implies the first row must be zero for
entries 2 through \(n\). Continuing this argument for row–column pairs 2 through \(n\) shows \(A\) is diagonal. |