Forgot password?
 Register account
View 175|Reply 3

[几何] 两圆的乘积 帕斯卡蜗线

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-1-7 05:39 |Read mode
证明$$\left\{z_1z_2:\abs{z_1-\frac i2}=\abs{z_2-\frac12}=\frac12\right\}=\{z:2\abs{z}^2≤\abs z+\operatorname{Im}z\}$$

相关帖子:两圆的乘积

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-1-7 06:03
直接计算试下
  1. {x,y}=FullSimplify[ComplexExpand[ReIm[(I/2+1/2 (Cos[t1]+I Sin[t1]))(1/2+1/2 (Cos[t2]+I Sin[t2]))]]];
  2. Minimize[{TrigReduce[x^2+y^2-(2x^2+2y^2-y)^2],0<=t1<=2Pi,0<=t2<=2Pi},{t1,t2}]
Copy the Code
输出
{0, {t1 -> 2 π - 2 ArcTan[2], t2 -> 2 ArcTan[3]}}

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-1-8 09:22
$\arg z_2=θ,|z_2|=\cosθ$
$z_1$在以$\frac i2$为中心,$\frac12$为半径的圆上. 乘$z_2$得到以$\frac{iz_2}2=\frac{\cosθ}2(-\sinθ+i\cosθ)$为中心,$\frac{|z_2|}2=\frac{\cosθ}2$为半径的圆$c$.\begin{equation}\label1\left(x+\frac{1}{2} \sin \theta  \cos \theta \right)^2+\left(y-\frac{\cos ^2\theta }{2}\right)^2-\left(\frac{\cos \theta }{2}\right)^2=0\end{equation}
\eqref{1}左边对$θ$求导得$x \cos (2 \theta )+y \sin (2 \theta )=0⇒\theta=\frac12\arctan(-\frac xy)$
代入\eqref{1}得, 圆$c$的包络$$2(x^2+y^2)=\sqrt{x^2+y^2}+y$$所以$z_1z_2$的集合是$\{z:2\abs{z}^2≤\abs z+\operatorname{Im}z\}$

一般地, 两圆的乘积是蜗线吗

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-1-9 19:21
$z_1z_2∈$圆$c$
由\eqref{1}, 圆$c$的中心$\left\{\begin{array}{l}
  x = - \frac{1}{4} \sin 2 \theta\\
  y = \frac{1}{4} + \frac{1}{4} \cos 2 \theta
\end{array}\right.$
轨迹为
\begin{equation}\label2x^2 + \left( y - \frac{1}{4} \right)^2 = \frac{1}{16}\end{equation}
动圆$c$, 经过定点, 圆心在定圆上, 则包络为帕斯卡蜗线.
这里定点是原点, 定圆是\eqref{2}


经过原点的两圆之积是蜗线.

证明:
设$z_1,z_2$分别在经过原点, 中心为$c_1,c_2$的两圆上.
固定$z_1$, 则$z_1z_2$的轨迹为橙色圆$(z_1c_2,\abs{z_1c_2})$. 当$z_1$运动时,$z_1c_2$的轨迹为紫色圆$(c_1c_2,\abs{c_1c_2})$.
所以橙色圆经过定点(原点), 圆心在定圆(紫色圆)上, 所以$z_1z_2$的集合=橙色圆的包络, 为帕斯卡蜗线.


一般地, 两圆的乘积是蜗线吗

Mobile version|Discuz Math Forum

2025-5-31 10:50 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit