Forgot password?
 Create new account
View 162|Reply 1

内积的小问题

[Copy link]

3

Threads

4

Posts

39

Credits

Credits
39

Show all posts

edward076923 Posted at 2023-1-12 06:44:31 |Read mode
想请问一下inner product里面gram matrix的限制条件
谢谢

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2023-1-12 17:25:45
一个 $n\times n$ 的埃尔米特矩阵 $M$ 是半正定的当且仅当对于每个非零的复向量 $\bf z$,都有 $\mathbf {z} ^{*}M\mathbf {z}\ge0$。其中 $\mathbf {z} ^{*}$表示 $ \mathbf {z} $ 的共轭转置。
Positive-semidefiniteness
格拉姆矩阵是半正定的(positive semidefinite):
\[x^{\dagger }\mathbf {G} x=\sum _{i,j}x_{i}^{*}x_{j}\left\langle v_{i},v_{j}\right\rangle =\sum _{i,j}\left\langle x_{i}v_{i},x_{j}v_{j}\right\rangle =\left\langle \sum _{i}x_{i}v_{i},\sum _{j}x_{j}v_{j}\right\rangle =\left\|\sum _{i}x_{i}v_{i}\right\|^{2}\geq 0.\]
Finding a vector realization
反之每个半正定矩阵是某些向量的格拉姆矩阵:
任何正定矩阵有Cholesky分解$M=B^\dagger B$。设$B$的列为向量$ b^{(1)},\dots ,b^{(n)}$。则$M_{ij}=\left<b^{(i)},b^{(j)}\right>$.

手机版Mobile version|Leisure Math Forum

2025-4-20 22:16 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list