Forgot password?
 Create new account
View 141|Reply 0

AᴴA的特征值

[Copy link]

3147

Threads

8495

Posts

610K

Credits

Credits
66173
QQ

Show all posts

hbghlyj Posted at 2023-1-17 19:42:51 |Read mode
$n$阶复矩阵$A = (a_{ij})$的特征值(计入重数)为$\lambda_1, \lambda_2, \ldots, \lambda_n$
则\begin{equation}\label1\sum_{i = 1}^n \sum_{j = 1}^n a_{ij} a_{ji} = \sum_{k = 1}^n \lambda_k^2\end{equation}
而\begin{equation}\sum_{i = 1}^n \sum_{j = 1}^n \overline{a_{ij}} a_{ji} = \sum_{k = 1}^n \abs{\lambda_k}^2\label2\end{equation}不一定成立. 右边是实数, 左边不一定是实数.
解释
若$A$的特征值为$\lambda_i$则
  • $f$为多项式则$f(A)$的特征值为$f(\lambda_i)$, 例如$A^2$的特征值为$\lambda_i^2$, 这推出\eqref{1}
  • $A^T$的特征值为$\lambda_i$
  • $A^*$的特征值为$\lambda_i^*$
  • $A^H=(A^*)^T$的特征值为$\overline{\lambda_i}$
  1. A=Table[RandomComplex[],{i,2},{j,2}];
  2. Eigenvalues[ConjugateTranspose[A]]
  3. Conjugate[Eigenvalues[A]]
Copy the Code

但是$A^HA$的特征值为$\overline{\lambda_i}\lambda_i=\abs{\lambda_i}^2$不成立, 所以\eqref{2}是错的.

手机版Mobile version|Leisure Math Forum

2025-4-21 01:14 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list