Forgot password?
 Create new account
View 259|Reply 6

[Copy link]

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2022-3-18 22:00:23 |Read mode
Last edited by hbghlyj at 2024-10-13 20:38:00Examples of common false beliefs in mathematics
云(false belief)
云0.1. 注意到
\[\dim (U+V) = \dim U + \dim V - \dim U\cap V\]
我们有容斥原理\begin{align*}
\dim(U + V + W) &= \dim(U) + \dim(V) + \dim(W)\\
&\qquad\mathop{-} \dim(U \cap V) - \dim(U \cap W) - \dim(V \cap W)\\&\qquad \mathop{+} \dim(U \cap V \cap  W)
\end{align*}

这个公式是不成立的.(见the calculation of dim u v w)
只能做到\begin{align*} \dim(U +V + W) &= \dim((U +V) + W) \\ &= \dim(U +V) + \dim W - \dim((U+V)\cap W) \\ &=
\dim U + \dim V - \dim (U \cap V) + \dim W - \dim((U+V)\cap W) \end{align*}而无法继续套用二维情况的等式.

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2022-3-18 22:02:34
Last edited by hbghlyj at 2024-10-13 19:31:00
云0.2. 由于
\[
\operatorname{Tr}(AB) = \operatorname{Tr}(BA),
\]
根据数学归纳法, 对$\tau \in S_k$,
\[
\operatorname{Tr}(A_1\cdots A_k) = \operatorname{Tr}(A_{\tau(1)}\cdots A_{\tau(k)}).
\]

云0.2的错误在于:由${\rm Tr}(AB)={\rm Tr}(BA)$,只能得到对$τ∈C_k,\operatorname{Tr}\left(A_{1} \cdots A_{k}\right)=\operatorname{Tr}\left(A_{\tau(1)} \cdots A_{\tau(k)}\right)$,而不能得到$τ∈S_k$时的结论.

维基百科:
Cyclic property
More generally, the trace is invariant under cyclic permutations, that is,
$$\operatorname{tr}(\mathbf{A}\mathbf{B}\mathbf{C}\mathbf{D}) = \operatorname{tr}(\mathbf{B}\mathbf{C}\mathbf{D}\mathbf{A}) = \operatorname{tr}(\mathbf{C}\mathbf{D}\mathbf{A}\mathbf{B}) = \operatorname{tr}(\mathbf{D}\mathbf{A}\mathbf{B}\mathbf{C}).$$
This is known as the ''cyclic property''.

Arbitrary permutations are not allowed: in general,
$$\operatorname{tr}(\mathbf{A}\mathbf{B}\mathbf{C}) \ne \operatorname{tr}(\mathbf{A}\mathbf{C}\mathbf{B}).$$

However, if products of three symmetric matrices are considered, any permutation is allowed, since:
$$\operatorname{tr}(\mathbf{A}\mathbf{B}\mathbf{C}) = \operatorname{tr}\left(\left(\mathbf{A}\mathbf{B}\mathbf{C}\right)^{\mathsf T}\right) = \operatorname{tr}(\mathbf{C}\mathbf{B}\mathbf{A}) = \operatorname{tr}(\mathbf{A}\mathbf{C}\mathbf{B}),$$
where the first equality is because the traces of a matrix and its transpose are equal. Note that this is not true in general for more than three factors.

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2022-3-18 22:59:46
Last edited by hbghlyj at 2024-10-13 20:05:00
云 0.3. 设 F:C→D 为函子, 则 F 的像为 D 的子范畴.

证明. 由于 F(g∘f)=F(g)∘F(f), 我们仍有复合运算. 结合律与单位元显然.

云0.3的错误在于,
如下图,
hiJNK[1].png
F的像不是右图中的范畴的子范畴,因为F的像中有函子p,q却不包含它们的复合qp.(见MSE)

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2024-10-14 05:06:29
云:
$\sin z$ 是有界函数,因为它是周期函数

这可以通过以下方式反驳:
(i) 有界的整函数是常数;
(ii) sinz 是整函数;
(iii) sinz 不是常数函数。

另一种方法是注意到 $\sin(iz)=i\sinh(z)$

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2024-10-14 05:11:15
云:
实数轴的开且稠密子集 $U$ 必定是整个实数轴。
“证明”:
每个点 $x$ 都任意接近 $U$ 中的点 $u$,因此当在 $u$ 周围放置一个小邻域时,它必定包含 $x$.
这个推理的缺陷完全在于语言“任意接近”的模糊性,数学被语言模糊了。稠密集的定义:对于每个 x∈R 和每个 ε>0,存在某个 u∈U 使得 |x−u|<ε,但 x 本身不必在 U 中。

反驳:Non-trivial open dense subset of R

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2024-12-9 10:14:27
threads.net/@haiiro.1023/post/DBIp5XrTN4h
女生讓男生厭惡的10個習慣:
(1)不溫柔
(2)認為有界閉集與緊集等價
(3)認為有限生成R模的子模也是有限生成的
(4)認為仿射簇的乘積的拓樸就是它們的Zariski拓樸的乘積拓樸
(5)認為流形上的聯絡都是無撓的
(6)算不清楚流形上的Laplace算子
(7)分不清投射模、內射模、平面模
(8)計算 Riemann曲率張量、Ricci張量時分不清上下指標,總是相差一個負號
(9)不熟悉自由生成、張量積、局部化等常見代數結構的泛性質。
(10)認為幾乎處處收斂一定是依測度收斂
v2-7373bd96fa49b39b6281f2af0f3832cb_1440w[1].jpg

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2024-12-9 10:17:56
hbghlyj 发表于 2024-12-9 02:14
(3)認為有限生成R模的子模也是有限生成的
In general, submodules of finitely generated modules need not be finitely generated. As an example, consider the ring R = Z[X1, X2, ...] of all polynomials in countably many variables. R itself is a finitely generated R-module (with {1} as generating set). Consider the submodule K consisting of all those polynomials with zero constant term. Since every polynomial contains only finitely many terms whose coefficients are non-zero, the R-module K is not finitely generated.

手机版Mobile version|Leisure Math Forum

2025-4-20 22:18 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list