Forgot password?
 Register account
View 258|Reply 1

[数论] $p∈ℚ[X],p(ℤ)⊆2ℤ∪3ℤ⇒p(ℤ)⊆2ℤ∨p(ℤ)⊆3ℤ$

[Copy link]

3156

Threads

7923

Posts

610K

Credits

Credits
64196
QQ

Show all posts

hbghlyj Posted 2023-1-23 01:08 |Read mode
Last edited by hbghlyj 2023-1-23 20:33

Suppose that $p ∈ ℚ[X]$ maps integers to integers and is such that for all $z∈ℤ$ either 2 divides $p(z)$ or 3 divides $p(z)$. Show that the quantifiers may be reversed i.e. that either for all $z∈ℤ$ we have 2 divides $p(z)$, or for all $z∈ℤ$ we have 3 divides $p(z)$.

设 $p ∈ ℚ[X]$ 将整数映射到整数,并且对于所有 $z∈ℤ$,$p(z)$ 是 2 或 3 的倍数。证明对于所有 $z∈ℤ$ 我们有 $p(z)$ 是 2 的倍数,或者对于所有 $z∈ℤ$ 我们有 $p(z)$ 是 3 的倍数。

3156

Threads

7923

Posts

610K

Credits

Credits
64196
QQ

Show all posts

 Author| hbghlyj Posted 2023-1-24 02:50

Mobile version|Discuz Math Forum

2025-6-6 02:14 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit