Suppose that $p ∈ ℚ[X]$ maps integers to integers and is such that for all $z∈ℤ$ either 2 divides $p(z)$ or 3 divides $p(z)$. Show that the quantifiers may be reversed i.e. that either for all $z∈ℤ$ we have 2 divides $p(z)$, or for all $z∈ℤ$ we have 3 divides $p(z)$.