Forgot password
 Register account
View 181|Reply 4

[不等式] 怎么用均值或柯西解最小值

[Copy link]

5

Threads

9

Posts

0

Reputation

Show all posts

math505 posted 2023-1-29 18:02 from mobile |Read mode
$a,b>0,a^2+2b^2=6,$求$\frac{1}{a}+\frac{2}{b}$的最小值

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2023-1-29 18:18
和之前这帖 forum.php?mod=viewthread&tid=9390 差不多

5

Threads

9

Posts

0

Reputation

Show all posts

original poster math505 posted 2023-1-29 18:44 from mobile
用均值为啥算出的值和mma给出的不一样,取等条件也差的离谱。

5

Threads

9

Posts

0

Reputation

Show all posts

original poster math505 posted 2023-1-29 18:51 from mobile
mma给出的最小值点:a,b=$\sqrt{2}$,最小值$\frac{3}{\sqrt{2}}$

19

Threads

44

Posts

0

Reputation

Show all posts

O-17 posted 2023-1-29 20:28
mma 没有错啊...用 $3\times2$ 的 Carlson 不等式是最简明的

\[
(a^2+2b^2)\left(\frac1a+\frac2b\right)\left(\frac1a+\frac2b\right)
\geqslant\left(\sqrt[3]{\frac{a^2}{a\cdot a}}+\sqrt[3]{\frac{8b^2}{b\cdot b}}\right)^3=27
\]

于是

\[
\frac1a+\frac2b\geqslant\sqrt{\frac{27}{6}}=\frac{3}{\sqrt{2}}
\]

均值或者柯西可以参考 kuing 大佬链接里的方法.

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:28 GMT+8

Powered by Discuz!

Processed in 0.013274 seconds, 22 queries