Forgot password?
 Register account
View 260|Reply 4

[不等式] 怎么用均值或柯西解最小值

[Copy link]

5

Threads

9

Posts

82

Credits

Credits
82

Show all posts

math505 Posted 2023-1-29 18:02 From mobile phone |Read mode
$a,b>0,a^2+2b^2=6,$求$\frac{1}{a}+\frac{2}{b}$的最小值

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2023-1-29 18:18
和之前这帖 forum.php?mod=viewthread&tid=9390 差不多

5

Threads

9

Posts

82

Credits

Credits
82

Show all posts

 Author| math505 Posted 2023-1-29 18:44 From mobile phone
用均值为啥算出的值和mma给出的不一样,取等条件也差的离谱。

5

Threads

9

Posts

82

Credits

Credits
82

Show all posts

 Author| math505 Posted 2023-1-29 18:51 From mobile phone
mma给出的最小值点:a,b=$\sqrt{2}$,最小值$\frac{3}{\sqrt{2}}$

19

Threads

44

Posts

409

Credits

Credits
409
QQ

Show all posts

O-17 Posted 2023-1-29 20:28
mma 没有错啊...用 $3\times2$ 的 Carlson 不等式是最简明的

\[
(a^2+2b^2)\left(\frac1a+\frac2b\right)\left(\frac1a+\frac2b\right)
\geqslant\left(\sqrt[3]{\frac{a^2}{a\cdot a}}+\sqrt[3]{\frac{8b^2}{b\cdot b}}\right)^3=27
\]

于是

\[
\frac1a+\frac2b\geqslant\sqrt{\frac{27}{6}}=\frac{3}{\sqrt{2}}
\]

均值或者柯西可以参考 kuing 大佬链接里的方法.

Mobile version|Discuz Math Forum

2025-5-31 10:48 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit