Forgot password?
 Register account
View 160|Reply 0

[函数] cos(2πkj/M)对k,j求和

[Copy link]

3158

Threads

7933

Posts

45

Reputation

Show all posts

hbghlyj posted 2023-1-31 20:55 |Read mode
对于任意正整数$M$,\[\sum_{j=1}^{M/2}\sum_{k=1}^{M-1}\cos\left(\frac{2\pi}{M}kj\right)=-\left\lfloor\frac M2\right\rfloor\]
Source: MSE
证明
$M=1$时两边为0. 当$M>1$时, 等价于\[\sum_{j=1}^{M/2}\sum_{k=1}^{M}\cos\left(\frac{2\pi}{M}kj\right)=0\]
因为$1≤j<M$, 所以$M\nmid j$, 根据这帖式(1)\[\sum_{k=1}^M\cos\left(\frac{2\pi}{M}kj\right)=0\]

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | 快速注册

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 05:14 GMT+8

Powered by Discuz!

Processed in 0.014430 second(s), 21 queries

× Quick Reply To Top Edit