Forgot password?
 Register account
View 520|Reply 1

交换$\lim_{n→∞}$和$\intⅆx$

[Copy link]

3153

Threads

7905

Posts

610K

Credits

Credits
64091
QQ

Show all posts

hbghlyj Posted 2023-2-14 02:53 |Read mode
Last edited by hbghlyj 2023-2-14 11:162021 Integration 3
Q5.
a) Show that $0≤\frac{x}{1+x^α}≤1$ for $α>1, x≥0$,
b) Deduce that
\[
\lim_{n→∞}\int_0^{2π} \frac{n x \sin x}{1+n^α x^α}ⅆx=0
\]

我的想法:
a)
Clearly $\frac{x}{1+x^α}≥0$. To prove $\frac{x}{1+x^α}≤1$, multiply by $1+x^α>0$, we get $x-1≤x^α$.
If $x≤1$, we have $x-1≤0≤x^α$; if $x>1$, since $α>1$, we have $x-1\lt x\lt x^α$.
b)
Replace $x$ with $nx$, we get $0≤\frac{nx}{1+n^αx^α}≤1$. So
\[
\int_0^{2π} \frac{n x{|\sin x|}}{1+n^α x^α}ⅆx≤\int_0^{2π}{|\sin x|}ⅆx=2π
\]
只证明了绝对值小于$2π$, 如何证明趋于零呢?

我有一个想法: 当$x$固定时,$$\lim_{n→∞}\frac{nx\sin x}{1+(nx)^α}=0$$交换$\lim$和$\int$得,积分当$n→∞$的极限为零
这个对吗? 交换$\lim_{n→∞}$和$\intⅆx$的条件是什么呢? 正在搜寻...
搜到了: Dominated convergence theorem
那么恰好用上(a)了, 证明完了

可能相关: math.stackexchange.com/questions/1580090/

3153

Threads

7905

Posts

610K

Credits

Credits
64091
QQ

Show all posts

 Author| hbghlyj Posted 2023-10-2 20:44

∫lim=lim∫但不一致收敛

Last edited by hbghlyj 2025-5-6 06:28 IMG-20231002-WA0001.jpg

Mobile version|Discuz Math Forum

2025-6-5 08:10 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit