Last edited by hbghlyj at 2023-4-11 14:41:00对于$0<ϵ<1$ 当$ϵ\to0$ 估计$f(ϵ)=\int_ϵ^1{\cos x\over x}\rmd x$
由$\cos x=1+O(x^2)$得$$\int_ϵ^1{\cos x\over x}\rmd x=\int_ϵ^1\frac1x+O(x)\rmd x=\log\frac1ϵ+O(ϵ^2)$$
上面我们使用了L'hospital推出 $\lim_{x\to0}\frac{f(x)}{g(x)}=1\implies\lim_{x\to0}\lim_{ε\to0}\frac{\int_ε^1f(x)\rmd x}{\int_ε^1g(x)\rmd x}=1$
验证:Limit[Integrate[Cos[x]/x,{x,ϵ,1},Assumptions->0<ϵ<1]/Log[1/ϵ],ϵ->0] 输出1
画图:
 |