Forgot password?
 Register account
View 162|Reply 1

[几何] $n$维单形的体积

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-2-25 17:17 |Read mode
考虑$\set{0,1}^n$中,有$n-1$个1的点与原点形成的$n$维单形$S_n$
$S_2$是正方形$[0,1]^2$的对角线$(0,0)(1,1)$, 长度为$\sqrt2$
$S_3$是立方体$[0,1]^3$的面对角线形成的四面体$(0,0,0)(1,0,1)(0,1,1)(1,1,0)$, 体积为$\frac1{3!}(\sqrt2)^2=\frac13$

  1. Permutations[{1, 1, 1, 0}] // Det
Copy the Code
输出$-3$
所以$S_4$的体积是$\frac1{4!}\times3=\frac18$

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-2-25 18:07

一般情况,体积

此帖中, 设$a_0=0,a_1=\cdots=a_{n-1}=1$, 注意到当$n\nmid k$时$-1=\zeta^k+\zeta^{2k}+\cdots+\zeta^{k(n-1)}$, 得
\[\det(A)=\prod_{k=0}^{n-1}(\zeta^k+\zeta^{2k}+\cdots+\zeta^{k(n-1)})=(n-1)(-1)^{n-1}\]故$S_n$的体积为$\dfrac1{n!}(n-1)$


另一种计算方法:
原点到超平面$x_1+\dots+x_n=n-1$的距离为$\frac{n-1}{\sqrt n}$
有$n-1$个1的顶点形成一个边长为$\sqrt2$的正$n-1$单形, 由Wikipedia知, 其$n-1$维体积为${\displaystyle \frac {\sqrt {n}}{(n-1)!}}$
所以$S_n$的体积$$\frac1{n}\times底\times高=\frac1n\times\frac{n-1}{\sqrt n}\times\frac {\sqrt {n}}{(n-1)!}=\frac1{n!}(n-1)$$

Mobile version|Discuz Math Forum

2025-5-31 10:34 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit