|
Hall and Knight - Higher Algebra page 498:
93. An Arithmetic Progression, a Geometric Progression, and an Harmonic Progression have $a$ and $b$ for their first two terms shew that their $(n+2)$th terms will be in Geometric Progression if
$$\frac{b^{2 n+2}-a^{2 n+2}}{b a\left(b^{2 n}-a^{2 n}\right)}=\frac{n+1}{n}$$
一个等差数列、等比数列和等谐数列的前两个项都是$a$和$b$,那么它们的第$(n+2)$项构成等比数列,如果$$\frac{b^{2 n+2}-a^{2 n+2}}{b a\left(b^{2 n}-a^{2 n}\right)}=\frac{n+1}{n}$$
94. Shew that the coefficient of $x^n$ in the expansion of $\frac{x}{(x-a)(x-b)}$ in ascending power of $x$ is $\frac{a^n-b^n}{a-b} \cdot \frac{1}{a^n b^n} ;$ and that the coeffieient of $x^{2 n}$ in the expansion of $\frac{\left(1+x^2\right)^n}{(1-x)^3}$ is $2^{n-1}\left(n^2+4 n+2\right)$.
[Emmanuel College, Cambridge] |
|