Forgot password?
 Register account
View 1229|Reply 1

[组合] 组合数恒等式

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2020-6-30 23:09 |Read mode
Last edited by hbghlyj 2020-7-1 00:17$p\in\mathbf N_+,c\in\mathbf R,$求证:
\[\sum\limits_{k=0}^p (-1)^k \left(\binom{p+1}{k} (c-k+p+1)^{p+1}-(p+1) \binom{p}{k} (c-k+p)^p\right)=-(-c)^{p+1}\]

83

Threads

435

Posts

5423

Credits

Credits
5423

Show all posts

tommywong Posted 2020-7-1 04:37
$\displaystyle \sum_{k=0}^p (-1)^k\binom{p+1}{k}(c-k+p+1)^{p+1}$
$\displaystyle =-(-c)^{p+1}
+\sum_{k=0}^{p+1} (-1)^{p+1-k}\binom{p+1}{k}(c+k)^{p+1}$
$=-(-c)^{p+1}+\Delta^{p+1} (c+k)^{p+1}=-(-c)^{p+1}+(p+1)!$

$\displaystyle \sum_{k=0}^p (-1)^k\binom{p}{k}(c-k+p)^p
=\Delta^p (c+k)^p=p!$

Mobile version|Discuz Math Forum

2025-5-31 10:49 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit