Forgot password?
 Register account
View 164|Reply 1

[几何] 外心到内心和旁心的距离平方和

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-3-4 04:39 |Read mode
Johnson, R. A. Modern Geometry: An Elementary Treatise on the Geometry of the Triangle and the Circle, 1929.
p. 190

$\triangle ABC$ 的外心 $O$, 内心 $I$ 和旁心 $J_i(i=1,2,3)$。证明
$$OI^2+OJ_1^2+OJ_2^2+OJ_3^2=12R^2 $$

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-3-4 05:24
$I,O$分别是$\triangle J_1J_2J_3$的垂心, 九点圆中心, 所以等价于证$\triangle ABC$中
$$HN^2+AN^2+BN^2+CN^2=3R^2\tag1$$
根据重心性质有$$AN^2+BN^2+CN^2=3GN^2+\frac13(a^2+b^2+c^2)$$式(1)化为
$$HN^2+3GN^2+\frac13(a^2+b^2+c^2)=3R^2$$
根据欧拉线上点的比例关系$OH:HN:GN=6:3:1$, 化为
$$\frac13OH^2+\frac13(a^2+b^2+c^2)=3R^2$$
根据费尔巴哈定理的结论$|OH|^2=9R^2-(a^2+b^2+c^2)$, 证毕

Mobile version|Discuz Math Forum

2025-5-31 10:55 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit