Last edited by hbghlyj 2023-4-20 10:28Renascence_5 发表于 2016-5-21 07:23
for the first one,give you a hint. Using $$\frac{1}{x^2+x+1}=\frac{1-x}{1-x^3}$$ and then the geometric series.maybe you will get a series related to the digamma function or polygarithm. 分圆多项式 $\Phi_6(x)=x^2-x+1$ 的倒数的级数
$$\frac{1}{\Phi_6(x)}=1+x-x^{3}-x^{4}+x^{6}+x^{7}-x^{9}-x^{10}+\ldots$$的系数 1, 0, -1, -1, 0, 1, 1, 0, -1, -1, ... (OEIS A010892) 满足递推式 $a(n)=a(n-1)-a(n-2)$
在 A New Kind of Science 第128页 例子(e)
- Clear[f];Column[Labeled[Row[{Spacer[10], #[[1]], Grid[{#[[2]]}, Background->GrayLevel[0.9], Frame->All, FrameStyle->Gray], "⋯"}, Spacer[0.5]], #[[3]], {{Top, Left}}]&/@{{"(a)", RecurrenceTable[{f[n]==1 + f[n - 1], f[1]==1}, f, {n, 38}], "f[n]=1+f[n-1], f[1]=1"}, {"(b)", RecurrenceTable[{f[n]==1 - f[n - 1], f[1]==1}, f, {n, 48}], "f[n]=1-f[n-1], f[1]=1"},
- {"(c)", RecurrenceTable[{f[n]==2f[n - 1], f[1]==1}, f, {n, 22}], "f[n]=2f[n-1], f[1]=1"},
- {"(d)", RecurrenceTable[{f[n]==f[n - 1] + f[n - 2], f[1]==f[2]==1}, f, {n, 26}], "f[n]=f[n-1]+f[n-2], f[1]=f[2]=1"},
- {"(e)", RecurrenceTable[{f[n]==f[n - 1] - f[n - 2], f[1]==f[2]==1}, f, {n, 44}], "f[n]=f[n-1]-f[n-2], f[1]=f[2]=1"},
- {"(f)", RecurrenceTable[{f[n]== - f[n - 1] + f[n - 2], f[1]==f[2]==1}, f, {n, 27}], "f[n]=-f[n-1]+f[n-2], f[1]=f[2]=1"}}
- , Spacings->1.5, BaseStyle->{FontFamily->"NewScienceSans", Italic, GrayLevel[0.2]}]
Copy the Code symbolic graphics- CloudGet["https://wolfr.am/nks-page0128a-graphic"]
Copy the Code 给出了表达式$a(n)={\sin\left[(n+1)\frac{\pi}{3}\right]\over\sin\frac\pi3}=U_n(\frac12)$, $U_n$ is the Chebyshev polynomial of the second kind.
线性递推$b(n)=b(n-1)-b(n-2)$的通解为$b(n)=b(0) a(n)+[b(1)-b(0)] a(n-1)$ |