Forgot password?
 Create new account
View 114|Reply 2

中值定理证明题

[Copy link]

3147

Threads

8497

Posts

610K

Credits

Credits
66183
QQ

Show all posts

hbghlyj Posted at 2023-3-27 22:29:31 |Read mode
13. 设函数 $f(x)$ 在闭区间 $[0,1]$上连续, 在开区间 $(0,1)$ 内可导, 且 $f(1)=6$. 证明:存在 $\xi \in(0,1)$使得$$\pi\sqrt{4-\xi^{2}}=f(\xi)+\sqrt{4-\xi^{2}} \arcsin \frac{\xi}{2} \cdot f^{\prime}(\xi)$$

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2023-3-28 00:26:38
$\pi=\dfrac{\mathrm d}{\mathrm dx}|_{x=\xi}\left(\arcsin\dfrac{x}{2}\cdot f(x)\right)$.

3147

Threads

8497

Posts

610K

Credits

Credits
66183
QQ

Show all posts

 Author| hbghlyj Posted at 2023-3-28 00:45:13
Czhang271828 发表于 2023-3-27 17:26
$\pi=\dfrac{\mathrm d}{\mathrm dx}|_{x=\xi}\left(\arcsin\dfrac{x}{2}\cdot f(x)\right)$.
懂了.
$\pi={\arcsin \frac{1}{2} \cdot f(1)-\arcsin0\cdot f(0)\over1-0}$
$\exists\xi\in(0,1):\pi=(\arcsin \frac{\xi}{2} \cdot f(\xi))'=\frac1{\sqrt{4-\xi^{2}} }f(\xi)+\arcsin \frac{\xi}{2} \cdot f^{\prime}(\xi)$

手机版Mobile version|Leisure Math Forum

2025-4-21 01:26 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list