反例反例, 取 $n$ 使得 $4\varphi(n)+4\leq n$. 置 $\zeta=e^{2\pi i/n}$, 考虑极小多项式 \[
\Phi_{n}(\zeta)=\sum_{k=0}^{\varphi(n)}a_k\zeta^k=0,\quad a_k\in \mathbb Z.\]此时\[
\sum_{k=1}^{\varphi(n)+1}a_{k-1}\cdot \sin\dfrac{2\pi \cdot k}{n}=\mathrm{Im}(\zeta\cdot \Phi_{n}(\zeta))=0.\]
关于 $n$ 的选取: 考虑 $n_N=p_1\cdot p_2\cdots p_N$ 为前 $N$ 个素数的乘积, 则有熟知结论\[
\lim_{N\to\infty}\dfrac{n_N}{\varphi(n_N)}=\lim_{N\to\infty}\prod_{l=1}^N(1-p_l^{-1})^{-1}=\lim_{N\to\infty}\sum_{l=1}^N\dfrac{1}{l}=\infty.
\]从而 $n$ 可选取. 最小解 $\varphi(210)=48$. |