Forgot password?
 Create new account
View 185|Reply 9

$\int_{0}^{1} \frac{\ln (x+1)}{x^{2}+1} d x$

[Copy link]

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2023-4-11 23:48:08 |Read mode
Putnam 2005 A5. $\displaystyle\int_{0}^{1} \frac{\ln (x+1)}{x^{2}+1} d x$
设 $\displaystyle I(a)=\int_{0}^{1} \frac{\ln (a x+1)}{x^{2}+1} d x$
这意味着我们的原始积分是 $I(1)$ 并且 $I(0) = 0$。
\begin{aligned} \frac{\partial I}{\partial a} & =\int_{0}^{1} \frac{x}{(a x+1)\left(x^{2}+1\right)} d x \\ & =\frac{1}{a^{2}+1} \int_{0}^{1}\left(\frac{a}{x^{2}+1}+\frac{x}{x^{2}+1}-\frac{a}{a x+1}\right) d x \\ & =\frac{\pi a+2 \ln 2-4 \ln (a+1)}{4\left(a^{2}+1\right)}\end{aligned}由于 $I(0) = 0$,\begin{aligned} I(1) & =\int_{0}^{1}\left(\frac{\pi a+2 \ln 2-4 \ln (a+1)}{4\left(a^{2}+1\right)}\right) d a \\ & =\int_{0}^{1} \frac{\pi a+2 \ln 2}{4\left(a^{2}+1\right)} d a-\int_{0}^{1} \frac{\ln (a+1)}{\left(a^{2}+1\right)} d a \\ & =\int_{0}^{1} \frac{\pi a+2 \ln 2}{4\left(a^{2}+1\right)} d a-I(1) \\ \therefore I(1) & =\frac{1}{2} \int_{0}^{1} \frac{\pi a+2 \ln 2}{4\left(a^{2}+1\right)} d a\end{aligned}这是一个有理函数的积分,可以立即计算出来。结果是:$I(1)={\pi\ln2\over8}$.

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2023-4-11 23:53:33

Bug report

没有写标签,结果仍然显示两个标签。 output.gif

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2023-4-12 10:48:56
除了变限积分求导还有很多方法,如变量替换法
kuing.cjhb.site/forum.php?mod=viewthread&tid=7821

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2023-4-12 11:22:48
点击链接发现没有"标签 integral"相关帖子
我不想添加这个标签,它是不小心添加的,@kuing 能删除吗

Comment

怎么回事,你咋搞的那么多个 tag……Integral,Integral,Integral,Integral,Integral,Integral,Integral,Integral,Integral,Integral,Integral,Integral,Integral,Integral,Integral,Integral,Inte...  Posted at 2023-4-12 14:08
我也删不了了  Posted at 2023-4-12 14:10

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2023-4-12 13:27:30
哎呀,整了个经典积分啊,终于有看得懂的了,哈哈哈
isee=freeMaths@知乎

701

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2023-4-12 14:15:36
hbghlyj 发表于 2023-4-12 11:22
点击链接发现没有"标签 integral"相关帖子
我不想添加这个标签,它是不小心添加的,@kuing 能删除吗{:shuai ...
我已经在后台把 Integral 这个标签给删除了,但 1# 的那串还在

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2023-4-12 15:04:20
这样的话,不如直接重开一帖,后回收这帖

Comment

没必要,由它吧,不管标签。  Posted at 2023-4-12 15:07
isee=freeMaths@知乎

手机版Mobile version|Leisure Math Forum

2025-4-20 22:23 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list