Forgot password?
 Register account
View 232|Reply 5

[函数] 求n阶导数

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-4-16 06:28 |Read mode
Last edited by hbghlyj 2023-4-16 19:42$f:[-1,\infty)\to\Bbb R;f(x)=(x-1)(\sqrt{x+1}+1)^2$. 求$f^{(n)}(1)$.

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2023-4-16 11:00
你这里必须假设$x>-1$它都是有定义的,要不然$x=1$是个端点,左导数不存在,绝对是不可导的

\[f(x)=x^2+x-2+2(x-1)\sqrt{x+1}\]
这里面$x^2+x-2$这块很快就没了,后面用莱布尼兹公式就完了
\[f^{(n)}(x)=\frac{d^n}{dx^n}(x^2+x-2)+2\sum_{k=0}^nC_n^kg^{(k)}(x)h^{(n-k)}(x)\]
其中
\[g(x)=x-1,h(x)=\sqrt{x+1}\]
\[h^{(n-k)}(x)=(\frac{1}{2})(-\frac{1}{2})(-\frac{3}{2})(-\frac{5}{2})...(-\frac{2n-3}{2})(x+1)^{-\frac{2n-1}{2}}=-\frac{(2n-3)!!}{(-2)^{n}}\cdot\frac{1}{(\sqrt{x+1})^{2n-1}}\]

$n=1,2$时就不说了,$n>2$时,会有
\[f^{(n)}(x)=2(x-1)h^{(n)}(x)+2nh^{(n-1)}(x)\]
\[f^{(n)}(1)=2h^{(n-1)}(1)=n\frac{(2n-5)!!}{(-2)^{n-2}}\cdot(\frac{1}{\sqrt{2}})^{2n-3}\]

Comment

我修改了表达式以解决 x 域的问题🙂  Posted 2023-4-17 02:44

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-4-17 02:29
$f_\min=f\left(1-\sqrt{17}\over8\right)=-{17 \sqrt{17}+71\over32}$

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-4-17 02:47
战巡 发表于 2023-4-16 04:00
\[h^{(n-k)}(x)=(\frac{1}{2})(-\frac{1}{2})(-\frac{3}{2})(-\frac{5}{2})...(-\frac{2n-3}{2})(x+1)^{-\frac{2n-1}{2}}=-\frac{(2n-3)!!}{(-2)^{n}}\cdot\frac{1}{(\sqrt{x+1})^{2n-1}}\]
应该是$h^{(n)}$吧🙂

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-4-17 02:49
战巡 发表于 2023-4-16 04:00
\[f^{(n)}(1)=2h^{(n-1)}(1)=n\frac{(2n-5)!!}{(-2)^{n-2}}\cdot(\frac{1}{\sqrt{2}})^{2n-3}\]
漏写了$n$, 应该是$f^{(n)}(1)=2\color{red}nh^{(n-1)}(1)$吧🙂

Mobile version|Discuz Math Forum

2025-5-31 11:08 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit