Forgot password?
 Create new account
View 1368|Reply 7

[函数] 求函数$f(x)=(1-\dfrac1x)\ln x$的$n$阶导数

[Copy link]

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2017-4-8 23:04:46 |Read mode
如题
妙不可言,不明其妙,不着一字,各释其妙!

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2017-4-9 00:06:25
也没啥特别的吧,照代$n$阶导数的莱布尼茨公式去算就是了,最终结果也不是太好看(没算错的话得带个调和级数),
出这题莫非和你上次的这题 kuing.cjhb.site/forum.php?mod=viewthread&tid=4492 有关系?

PS、贴图我删掉了,这里绝对没人不知道n阶导数是什么。

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

 Author| 其妙 Posted at 2017-4-9 21:48:13
回复 2# kuing
没什么大的关系。答案写成递推公式也可以,有没有过程?

701

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2017-4-9 22:21:30
回复 3# 其妙

那出这题是啥用意啊,毕竟过程毫无技术含量,纯粹套公式化简
\begin{align*}
\left( \frac{\ln x}x \right)^{(n)}
&=\sum_{k=0}^nC_n^k(x^{-1})^{(n-k)}(\ln x)^{(k)} \\
&=(-1)^n\frac{n!}{x^{n+1}}\ln x+\sum_{k=1}^n \frac{n!}{k!(n-k)!} (-1)^{n-k}\frac{(n-k)!}{x^{n-k+1}} (-1)^{k-1}\frac{(k-1)!}{x^k} \\
&=(-1)^n\frac{n!}{x^{n+1}}\ln x+(-1)^{n-1}n!\sum_{k=1}^n\frac1k\cdot \frac1{x^{n+1}},
\end{align*}
所以
\begin{align*}
f^{(n)}(x)&=(\ln x)^{(n)}-\left( \frac{\ln x}x \right)^{(n)} \\
&=(-1)^{n-1}\frac{(n-1)!}{x^n}
-(-1)^n\frac{n!}{x^{n+1}}\ln x-(-1)^{n-1}n!\sum_{k=1}^n\frac1k\cdot \frac1{x^{n+1}} \\
&=\frac{(-1)^{n-1}n!}{x^{n+1}}\left( \frac xn+\ln x-\sum_{k=1}^n\frac1k \right).
\end{align*}

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

 Author| 其妙 Posted at 2017-4-9 23:09:18
回复 4# kuing

对你来说是毫无技术含量,

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

 Author| 其妙 Posted at 2017-4-9 23:25:29
Last edited by hbghlyj at 2025-4-1 04:31:03不过是这样的题目才有点意义
题目:已知 $f(x)=\left(1-\frac{1}{x}\right) \ln x$ ,记 $f_0(x)=f(x), f_1(x)=f^{\prime}(x), f_2(x)=f^{\prime \prime}(x)=\left[f_1(x)\right]^{\prime}$
$f_3(x)=f''(x)=\left[f_2(x)\right]^{\prime}, \cdots, \quad f_n(x)=f^{(n)}(x)=\left[f_{n-1}(x)\right]^{\prime}$,
(1)证明:$f_n(x)=\frac{a_n \ln x+b_n x+c_n}{x^{n+1}}$ ,其中 $a_n, b_n, c_n \inR$ ,
(2)求数列 $\left\{a_n\right\},\left\{b_n\right\},\left\{c_n\right\}$ 的通项公式.
(本题由其妙命制)

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2017-4-12 17:51:02
不过是这样的题目才有点意义:
其妙 发表于 2017-4-9 23:25

    你说有点意思,学生就要吐了。

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

hbghlyj Posted at 2025-4-1 04:28:33

手机版Mobile version|Leisure Math Forum

2025-4-20 22:09 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list