|
Author |
其妙
Posted at 2017-4-9 23:25:29
Last edited by hbghlyj at 2025-4-1 04:31:03不过是这样的题目才有点意义 :
题目:已知 $f(x)=\left(1-\frac{1}{x}\right) \ln x$ ,记 $f_0(x)=f(x), f_1(x)=f^{\prime}(x), f_2(x)=f^{\prime \prime}(x)=\left[f_1(x)\right]^{\prime}$
$f_3(x)=f''(x)=\left[f_2(x)\right]^{\prime}, \cdots, \quad f_n(x)=f^{(n)}(x)=\left[f_{n-1}(x)\right]^{\prime}$,
(1)证明:$f_n(x)=\frac{a_n \ln x+b_n x+c_n}{x^{n+1}}$ ,其中 $a_n, b_n, c_n \inR$ ,
(2)求数列 $\left\{a_n\right\},\left\{b_n\right\},\left\{c_n\right\}$ 的通项公式.
(本题由其妙命制) |
|