Forgot password?
 Create new account
View 169|Reply 2

[不等式] 禁用近似值证明 $\sqrt2+\sqrt3>\pi$

[Copy link]

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2024-11-16 21:24:46 |Read mode
源自知乎提问,有些无聊,虽然想了好久~



:证明 $\sqrt2+\sqrt3>\pi$.



提示:看加粗部分即可.


取函数 $g(x)=\tan x+2\sin x-3x,\,0<x<\pi/2$ ,其导数 \[g'(x)=\sec^2 x+\cos x+\cos x-3\geqslant 3\sqrt[3]{\sec^2x\cdot \cos^2 x}-3=0,\] 即 $g(x)$ 在 $(0,\pi/2)$ 上单调递增,所以 \[g(x)>g(0)\iff \bm{\color{blue}{\tan x+2\sin x>3x}},\] 令 $\bm{\color{blue}{x=\dfrac\pi8}}$ ,有 \[\pi<\frac83\Big(\sqrt{2}+\sqrt{2-\sqrt{2}}-1\Big),\] 从而只需要证明 \begin{gather*}
\Leftarrow 8\Big(\sqrt{2}+\sqrt{2-\sqrt{2}}-1\Big)<3\Big(\sqrt2+\sqrt3\Big),\\[1ex]
\iff \sqrt{2-\sqrt{2}}<8-5\sqrt2+3\sqrt3,\\[1ex]
\iff {\color{blue}{79\sqrt{2}}}+{\color{olive}{30\sqrt{6}}}<{\color{blue}{139}}+{\color{olive}{48\sqrt{3}}},
\end{gather*} 成立,而上式左边小于右边是显然的,证毕.
isee=freeMaths@知乎

4

Threads

30

Posts

815

Credits

Credits
815

Show all posts

ic_Mivoya Posted at 2024-11-16 23:41:01
$\begin{aligned}\pi^2&=8\sum_{k=0}^{\infty}\dfrac1{(2k+1)^2}\\&<8\left(1+\dfrac1{3^2}+\sum_{k=2}^{\infty}\dfrac1{(2k+1)^2-1}\right)\\&=8\left(1+\dfrac19+\dfrac14\sum_{k=2}^{\infty}\dfrac1{k(k+1)}\right)\\&=\dfrac{89}9~<~5+2\sqrt6\end{aligned}$

1

Threads

104

Posts

1771

Credits

Credits
1771

Show all posts

Aluminiumor Posted at 2024-11-17 11:46:46
其实理论上来说,各种放缩也是变相的取近似值,无非就是想办法有逼格地证出来😂

手机版Mobile version|Leisure Math Forum

2025-4-21 14:18 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list