Forgot password?
 Create new account
View 358|Reply 22

[不等式] 比较大小 $\log_35$,$\log_58$

[Copy link]

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2024-3-27 14:05:51 |Read mode
源自知乎提问




PS:熟悉高考题目的,就知道这其实是高考题的改编(取了倒数)

证明: $\log_35>\log_58\iff \log_53<\log_85$ .
汇个总,在知乎答过的方式.


Solution 1 少算多思

或分离出整数,比较小数部分 \begin{gather*}
1+\log_3\frac53>1+\log_5\frac53>1+\log_5\frac85.\qquad\square
\end{gather*}再如(以及其他答主的精彩方式)

对数怎么比较大小,例如log₂3和log₃4?



糖水不等式 \begin{gather*}
\log_53=\frac{\ln 3}{\ln 5}<\frac{\ln 3+\ln\frac53}{\ln 5+\ln\frac53}=\frac{\ln5}{\ln\frac{25}3}<\frac{\ln 5}{\ln8}=\log_85.
\end{gather*}



Solution 2 多算少思
找中间数过度,思想就是二分法,逐渐调整,最后有 \[\log_35>\frac{7}{5}>\log_58.\]

具体可参考, 本月初的一个答文:比较log 2根号三和log 54的大小?



Solution 3 朴素作商或作差
具体请看曾经的答文——均值不等式上场:log₅3与log₈5,怎么比较大小?




Solution 4 记住常见常数近似值
$\lg 2\approx 0.3010$ , $\lg3\approx0.4771$: \begin{gather*}
\log_35=\frac{\lg5}{\lg 3}=\frac{1-\lg2}{\lg 3}\approx \frac{1-0.301}{0.477}\approx1.4\cdots,\\[1ex]
\log_58=\frac{3\lg2}{1-\lg 2}=\frac{0.903}{0.699}\approx1.2\cdots,\\[1ex]
\therefore\ \log_35>\log_58.
\end{gather*}




Solution 5 应用公式
命题:若 $d>c\geqslant b>a>1$ 且 $bc\geqslant ad$ 时,则 \[\log_ab>\log_cd, \; \log_ac>\log_bd.\]
isee=freeMaths@知乎

701

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2024-3-27 16:35:49
还有作弊法

解:做乘法计算知 `5^3>3^4` 且 `5^4>8^3`,所以 `\log_35>4/3>\log_58`。

Comment

中间数,我是从 1.5 到 1.4 的,未考虑最佳逼近分数😀  Posted at 2024-3-27 19:23
逼近还是得上连分数,感觉连分数的逼近效果要比泰勒展开要好不少  Posted at 2024-3-27 23:14

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

 Author| isee Posted at 2024-3-27 19:24:14
kuing 发表于 2024-3-27 16:35
还有作弊法呀

解:做乘法计算知 `5^3>3^4` 且 `5^4>8^3`,所以 `\log_35>4/3>\log_58`。 ...
知乎有那两题呢,本来也不是人(手工)比的,太接近了~

Comment

哪两题?求拜读  Posted at 2024-3-28 11:03
isee=freeMaths@知乎

7

Threads

349

Posts

2809

Credits

Credits
2809

Show all posts

睡神 Posted at 2024-3-27 21:35:01
$\log_35>\log_58\iff \log_53\cdot \log_58<1$

由基本不等式得$\log_53\cdot \log_58<\Big(\dfrac{\log_53+\log_58}{2}\Big)^2=\Big(\dfrac{\log_524}{2}\Big)^2<1$

噢,写完才看到,和Solution 3 基本上差不多。。。
除了不懂,就是装懂

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

 Author| isee Posted at 2024-3-28 09:41:30
睡神 发表于 2024-3-27 21:35
$\log_35>\log_58\iff \log_53\cdot \log_58<1$

由基本不等式得$\log_53\cdot \log_58<\Big(\dfrac{\log_5 ...
也挺好,且形式上更简洁,也容易切入:化底相同~
isee=freeMaths@知乎

4

Threads

30

Posts

815

Credits

Credits
815

Show all posts

ic_Mivoya Posted at 2024-3-28 23:43:28
以前刚好加强过这题,在这里放一下吧:

已知 Fibonacci 数列

$$F_n=\begin{cases}1&(n=1,2)\\F_{n-1}+F_{n-2}&(n\ge3)\end{cases}$$

$a,b,c$ 为其中连续三项,满足 $1<a<b<c$ ,求证:$\log_ba<\log_cb$ 。

701

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2024-3-29 00:28:23
ic_Mivoya 发表于 2024-3-28 23:43
以前刚好加强过这题,在这里放一下吧:

已知 Fibonacci 数列
我以前也曾猜想
\[\log_{F_{n-1}}F_n>\frac{n-1}{n-2}>\log_{F_n}F_{n+1},\quad\forall n>3\]
但是没证出来……😣

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2024-3-29 04:48:46
Last edited by hbghlyj at 2024-4-1 08:43:00
kuing 发表于 2024-3-28 16:28
我以前也曾猜想
\[\log_{F_{n-1}}F_n>\frac{n-1}{n-2}>\log_{F_n}F_{n+1},\quad\forall n>3\]
但是没证出 ...
kuing.cjhb.site/forum.php?mod=redirect&go … d=7674&pid=38362

是的。如果n是偶数,则很容易得到。
math.stackexchange.com/questions/4139629/a-fi … f-n1f-n-log-f-n2f-n1
JMP's answer:
For even $n$ you can use:
$$F_nF_{n+2}<F_{n+1}^2$$
$$\implies \log(F_nF_{n+2})<\log(F_{n+1}^2)$$
$$\implies \log(F_n)+\log(F_{n+2})<2\log(F_{n+1})$$
$$\implies \frac{\log(F_n)+\log(F_{n+2})}{2}<\log(F_{n+1})$$
By the AM-GM:
$$\sqrt{\log(F_n)\log(F_{n+2})}<\frac{\log(F_n)+\log(F_{n+2})}{2}< \log(F_{n+1})$$
as required.


Amanuel Getachew's answer:(他的case 2和上面相同)

$ \log_{F_{n+1} } F_n < \log_{F_{n+2} }F_{n+1}.$
This is equivalent to:
$$\dfrac{\log F_{n}}{\log F_{n+1}} < \dfrac{\log    F_{n+1}}{\log F_{n+2}}$$
Multiply both sides by $\log F_{n+1}\log F_{n+2}$ and you'll get  $\log(F_n )\log (F_{n+2}) < (\log (F_{n+1}))^2$ ($\log$ here is the natural logarithm).

One can use the Cassini identity ($F_{n+1}^2 = F_nF_{n+2} \pm 1$) to prove your conjecture, but first let's establish an inequality equivalent to the above one,
$$\log(F_n)\log(F_{n+2})< (\log(F_{n+1}))^2 = (\frac{1}2\log(F_{n+1}^2))^2 = \frac{1}{4}(\log(F_{n+1})^2)^2$$

Therefore it suffices to prove that $\log(F_{n+1}^2)^2 > 4\log F_n \log F_{n+2}$

Case 1: when $F_{n+1}^2 = F_nF_{n+2} - 1$
$$(\log(F_{n+2}/F_{n}))^2 > (\log 2)^2 > \dfrac{2 \log F_n}{F_n} + \dfrac{2\log 3F_n}{F_n} - \dfrac{1}{F_n^2}$$
$$\geq \dfrac{2 \log F_n + 2\log (2F_n + F_{n-1})}{F_n}- \dfrac{1}{F_n^2} = \dfrac{2 \log F_n + 2\log (F_{n+2})}{F_n}- \dfrac{1}{F_n^2}$$
$$\implies (\log F_{n+2} - \log F_n)^2 > \dfrac{2 \log F_nF_{n+2}}{F_n} - \dfrac{1}{F_n^2}$$
for a sufficiently large $n$($n \geq 8$ for the Fibonacci sequence starting with $1$ and $2$). Now add $4\log F_n \log F_{n+2}$ to both sides:
$$(\log F_{n+2} + \log F_n)^2 > \dfrac{2 \log F_nF_{n+2}}{F_n} - \dfrac{1}{F_n^2} + 4\log F_n \log F_{n+2} $$
$$\implies (\log F_{n+2} + \log F_n)^2 - \dfrac{2 \log F_nF_{n+2}}{F_n} + \dfrac{1}{F_n^2} > 4\log F_n \log F_{n+2}$$
$$\implies (\log F_{n} + \log F_{n+2} - \dfrac{1}{F_n})^2 > 4\log F_n \log F_{n+2}$$
$$\implies (\log F_{n} + \log (F_{n+2} - \dfrac{1}{F_n}))^2 = (\log(F_n\cdot (F_{n+2} - \dfrac{1}{F_n})))^2 = \log(F_{n+1}^2)^2 > 4\log F_n \log F_{n+2} $$
Case 2: when $F_{n+1}^2 = F_nF_{n+2} + 1$
$$(\log F_{n+2} - \log F_n)^2 > 0 $$
$$\implies (\log F_{n+2} +\log F_n)^2 > 4\log F_n \log F_{n+2}$$
$$\implies (\log F_{n+1}^2)^2 = (\log F_{n+2}F_n + 1)^2 > (\log F_{n+2}F_n)^2 > 4\log F_n \log F_{n+2}$$
Verifying the inequality for $n < 8$ manually completes the proof using Cassini's identity.

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

 Author| isee Posted at 2024-3-29 13:42:52
ic_Mivoya 发表于 2024-3-28 23:43
以前刚好加强过这题,在这里放一下吧:

已知 Fibonacci 数列
这个也确实见到过,不过,我觉得不算是比较大小,算是 Fibonacci 数列 的一个性质了
isee=freeMaths@知乎

410

Threads

1044

Posts

110K

Credits

Credits
11577

Show all posts

lemondian Posted at 2024-3-29 15:16:11
Last edited by lemondian at 2024-3-30 08:48:00$\dfrac{n-2}{n-1}<\log_{F_{n+1}}F_n<\dfrac{n-1}{n},\quad\forall n\geqslant 3$
这个与7#等价吗?

Comment

等价,请码字  Posted at 2024-3-29 15:49
我也想码字的,主要是中间的那个对数式我搞不出来😅  Posted at 2024-3-29 16:08
你可以右键点击 7# 的公式选择 show math as -> tex commands 查看我是怎么码的  Posted at 2024-3-29 16:42
已修改  Posted at 2024-3-30 08:48

7

Threads

349

Posts

2809

Credits

Credits
2809

Show all posts

睡神 Posted at 2024-3-29 18:01:54 From the mobile phone
我水一下,试试码一下中间那个的代码$\log_{F_{n+1}}F_n$…这样对不?😂
除了不懂,就是装懂

4

Threads

30

Posts

815

Credits

Credits
815

Show all posts

ic_Mivoya Posted at 2024-3-30 19:55:18
kuing 发表于 2024-3-29 00:28
我以前也曾猜想
\[\log_{F_{n-1}}F_n>\frac{n-1}{n-2}>\log_{F_n}F_{n+1},\quad\forall n>3\]
但是没证出 ...
这里给出大致的证明思路。

记 $x=\dfrac{\sqrt5+1}2$ ,熟知 Fibonacci 数列有通项公式:
$$F_n=\dfrac{x^n-(-1)^nx^{-n}}{\sqrt5}$$
取对数:
$$\begin{aligned}
\ln F_n&=\ln(x^n-(-1)^nx^{-n})-\ln\sqrt5\\
&=n\ln x-\ln\sqrt5+\ln(1-(-1)^nx^{-2n})\\
&\approx n\ln x-\ln\sqrt5
\end{aligned}$$
由于 $|\ln(1-(-1)^nx^{-2n})|=O(x^{-2n})$ 是高阶小量,不妨忽略其影响。断言:

$\dfrac{\ln F_n}{n-1}\approx \ln x+\dfrac{\ln x-\ln\sqrt5}{n-1}$  ,单调增;
$\dfrac{\ln F_n}{n-2}\approx \ln x+\dfrac{2\ln x-\ln\sqrt5}{n-2}$ ,单调减。

因此 $\dfrac{\ln F_{n+1}}{\ln F_n}>\dfrac{n-1}{n-2}>\dfrac{\ln F_n}{\ln F_{n-1}}$ ,这就是要证的。

再通过一些计算,容易证明:
即使考虑 $\ln(1-(-1)^nx^{-2n})$ 这一项,也确实不影响 $\left\{\dfrac{\ln F_n}{n-1}\right\},\left\{\dfrac{\ln F_n}{n-2}\right\}$ 的增减性。
这是 trivial 的,不再加以说明。

410

Threads

1044

Posts

110K

Credits

Credits
11577

Show all posts

lemondian Posted at 2024-4-1 11:25:37
$\dfrac{n-2}{n-1}<\log_{F_{n+1}}F_n<\dfrac{n-1}{n},\quad\forall n\geqslant 3$

这个好象有一个初等的证法(好象在哪看过,暂时还没找到),大意是这样的:
设$\varphi =\dfrac{1+\sqrt{5}}{2}$,则$-\varphi^{-1} =\dfrac{1-\sqrt{5}}{2},F_n=\dfrac{\varphi ^n-(-\varphi )^{-n}}{\sqrt{5}}$。
记$E_n=\dfrac{\varphi ^n-\varphi ^{-n}}{\sqrt{5}},G_n=\dfrac{\varphi ^n+\varphi ^{-n}}{\sqrt{5}}$,则$0<E_n\leqslant F_n\leqslant G_n$。
然后就可以分左、右两边来上述不等证了,大家看看能不能证.

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2024-4-1 18:10:12
hbghlyj 发表于 2024-3-28 20:48
$$\implies (\log F_{n} + \log F_{n+2} - \dfrac{1}{F_n})^2 > 4\log F_n \log F_{n+2}$$
$$\implies (\log F_{n} + \log (F_{n+2} - \dfrac{1}{F_n}))^2 = (\log(F_n\cdot (F_{n+2} - \dfrac{1}{F_n})))^2 = \log(F_{n+1}^2)^2 > 4\log F_n \log F_{n+2} $$
Case 1.最後一行把左式換掉了,為什麼可以換,一眼看不出来。但確實是正確的,我給補充了一下:math.stackexchange.com/questions/4891097/

410

Threads

1044

Posts

110K

Credits

Credits
11577

Show all posts

lemondian Posted at 2024-4-2 08:38:21
Last edited by hbghlyj at 2025-3-30 06:28:17
lemondian 发表于 2024-4-1 11:25
$\dfrac{n-2}{n-1}<\log_{F_{n+1}}F_n<\dfrac{n-1}{n},\quad\forall n\geqslant 3$

这个好象有一个初等的 ...
找到这个证明了。
大家看看这个证明是否正确?有没有更好的证法?@kuing
2 猜想的证明
引理 1(Bernoulli 不等式):设 $x \geqslant-2, n \in \mathbf{N}$ ,则 $(1+x)^n \geqslant 1+n x$ .

证明 当 $n=1$ 时,显然成立.
以下考虑 $n>1$ 的情况.
设 $f(x)=(1+x)^n-(1+n x)$ ,则 $f^{\prime}(x)=n\left[(1+x)^{n-1}-1\right]$ .
当 $x \geqslant 0$ 时,$f^{\prime}(x) \geqslant 0$ ,
所以 $f(x)$ 单调递增,$f(x) \geqslant f(0)=0$ .
当 $-2 \leqslant x \leqslant 0$ 时,因为 $(1+x)^{n-1}-1 \leqslant$
$|1+x|^{n-1}-1 \leqslant 0$ ,所以 $f^{\prime}(x) \leqslant 0$ ,
所以 $f(x)$ 单调递减,$f(x) \geqslant f(0)=0$ .
所以当 $x \geqslant-2$ 时,$f(x) \geqslant 0$ ,即 $(1+x)^n \geqslant 1+n x$ .
注 常见的 Bernoulli 不等式中要求 $x \geqslant$ -1 ,这个引理说明 $x \geqslant-1$ 的条件可以放大至 $x \geqslant-2$ .
猜想的证明 设 $\varphi=\frac{1+\sqrt{5}}{2}$ ,则 $-\varphi^{-1}=\frac{1-\sqrt{5}}{2}$ ,斐波那契数列的通项公式为
$F_n=\frac{\varphi^n-(-\varphi)^{-n}}{\sqrt{5}}$(棣美弗在 18 世纪初给出了这个通项公式,而第一个严格证明是由 Binet给出的,因此这个公式也称为 Binet 公式).

\[
\text { 设 } E_n=\frac{\varphi^n-\varphi^{-n}}{\sqrt{5}}, G_n=\frac{\varphi^n+\varphi^{-n}}{\sqrt{5}} \text {, }
\]


则 $0<E_n \leqslant F_n \leqslant G_n$ .
(1)首先证明猜想的左半部分.
因为 $\log _{F_{n+1}} F_n>\frac{n-2}{n-1} \Leftrightarrow F_n>F_{n+1}^{\frac{n-2}{n-1}} \Leftrightarrow F_n^{n-1}>F_{n+1}^{n-2}$ ,
所以只需证明当 $n \geqslant 3$ 时,$F_n^{n-1}>F_{n+1}^{n-2}$ .
当 $n=3$ 时, $4=F_3^2>F_4^1=3, F_n^{n-1}>F_{n+1}^{n-2}$ 成立.
当 $n \geqslant 4$ 时,因为 $F_n^{n-1} \geqslant E_n^{n-1}, G_{n+1}^{n-2} \geqslant F_{n+1}^{n-2}$ ,
欲证 $F_n^{n-1}>F_{n+1}^{n-2}$ ,只需证 $E_n^{n-1}>G_{n+1}^{n-2}$ ,
即 $\left(\frac{E_n}{G_{n+1}}\right)^{n-1}>\frac{1}{G_{n+1}}$ .
因为 $G_{n+1}=\frac{\varphi^{n+1}+\varphi^{-n-1}}{\sqrt{5}}>\frac{\varphi^{n+1}}{\sqrt{5}}$ ,
所以 $\frac{1}{G_{n+1}}<\frac{\sqrt{5}}{\varphi^{n+1}}$ .
所以欲证 $\left(\frac{E_n}{G_{n+1}}\right)^{n-1}>\frac{1}{G_{n+1}}$ ,
只需证明 $\left(\frac{E_n}{G_{n+1}}\right)^{n-1}>\frac{\sqrt{5}}{\varphi^{n+1}}$ .
我们有

\[
\begin{aligned}
& \frac{E_n}{G_{n+1}}=\frac{\varphi^n-\varphi^{-n}}{\varphi^{n+1}+\varphi^{-n-1}}=\frac{\varphi^n}{\varphi^{n+1}} \cdot \frac{1-\varphi^{-2 n}}{1+\varphi^{-2 n-2}} \\
= & \frac{1}{\varphi} \cdot \frac{1+\varphi^{-2 n-2}-\varphi^{-2 n-2}-\varphi^{-2 n}}{1+\varphi^{-2 n-2}} \\
= & \frac{1}{\varphi} \cdot\left(1-\frac{\varphi^{-2 n-2}+\varphi^{-2 n}}{1+\varphi^{-2 n-2}}\right) .
\end{aligned}
\]


因为 $1+\varphi^{-2 n-2}>1$ ,
\[
\text { 所以 } \begin{aligned}
\frac{E_n}{G_{n+1}} & =\frac{1}{\varphi} \cdot\left(1-\frac{\varphi^{-2 n-2}+\varphi^{-2 n}}{1+\varphi^{-2 n-2}}\right) \\
& >\frac{1}{\varphi} \cdot\left[1-\left(\varphi^{-2 n-2}+\varphi^{-2 n}\right)\right] .
\end{aligned}
\]


又因为 $\varphi^{-2 n-2}+\varphi^{-2 n}<\varphi^0+\varphi^0=2$ ,
所以 $-\left(\varphi^{-2 n-2}+\varphi^{-2 n}\right)>-2$ .
由 Bernoulli 不等式得

\[
\begin{aligned}
& \left(\frac{E_n}{G_{n+1}}\right)^{n-1}>\frac{1}{\varphi^{n-1}} \cdot\left[1-\left(\varphi^{-2 n-2}+\varphi^{-2 n}\right)\right]^{n-1} \\
> & \frac{1-(n-1)\left(\varphi^{-2 n-2}+\varphi^{-2 n}\right)}{\varphi^{n-1}} \\
= & \frac{\varphi^2-(n-1)\left(\varphi^{-2 n}+\varphi^{-2 n+2}\right)}{\varphi^{n+1}} \\
= & \frac{\varphi^2-\varphi^{-2 n}(n-1)\left(1+\varphi^2\right)}{\varphi^{n+1}} .
\end{aligned}
\]


所以欲证 $\left(\frac{E_n}{G_{n+1}}\right)^{n-1}>\frac{\sqrt{5}}{\varphi^{n+1}}$ ,
只需证明 $\varphi^2-\varphi^{-2 n}(n-1)\left(1+\varphi^2\right)>\sqrt{5}$ ,
这等价于证明 $\frac{\varphi^{2 n-2}}{n-1}>\frac{1+\varphi^{-2}}{\varphi^2-\sqrt{5}}$ .
因为 $n \geqslant 4$ ,所以

\[
\frac{\varphi^{2 n}}{n} \left\lvert\, \frac{\varphi^{2 n-2}}{n-1}=\varphi^2 \frac{(n-1)}{n}=\varphi^2\left(1-\frac{1}{n}\right) \geqslant \frac{3 \varphi^2}{4}>1\right.,
\]


所以 $\frac{\varphi^{2 n-2}}{n-1}$ 单调递增,
所以 $\frac{\varphi^{2 n-2}}{n-1} \geqslant \frac{\varphi^6}{3}$ .因此只需证明 $\frac{\varphi^6}{3}>\frac{1+\varphi^{-2}}{\varphi^2-\sqrt{5}}$ .
因为 $\frac{1+\varphi^{-2}}{\varphi^2-\sqrt{5}}=\frac{5-\sqrt{5}}{3-\sqrt{5}}=\frac{5+\sqrt{5}}{2}<\frac{5+3}{2}=4$ ,

\[
\frac{\varphi^6}{3}=3+\frac{4}{3} \sqrt{5}>3+\frac{4}{3}>4,
\]


所以 $\frac{\varphi^6}{3}>\frac{1+\varphi^{-2}}{\varphi^2-\sqrt{5}}$ .
因此当 $n \geqslant 4$ 时,$F_n^{n-1}>F_{n+1}^{n-2}$ 成立.
综上,当 $n \geqslant 3$ 时 $F_n^{n-1}>F_{n+1}^{n-2}$ 成立,即 $\log _{F_{n+1}} F_n>\frac{n-2}{n-1}$ 成立.
(2)下面证明猜想的右半部分.
因为 $\log _{F_{n+1}} F_n<\frac{n-1}{n} \Leftrightarrow F_n<F_{n+1}^{\frac{n-1}{n}} \Leftrightarrow F_n{ }^n<F_{n+1}^{n-1}$ ,
所以只需证明当 $n \geqslant 3$ 时,$F_n^n<F_{n+1}^{n-1}$ .
当 $n=3$ 时, $8=F_3^3<F_4^2=9$ ,所以 $F_n^n<F_{n+1}^{n-1}$ 成立.
当 $n \geqslant 4$ 时,因为 $F_n^n \leqslant G_n^n, E_{n+1}^{n-1} \leqslant F_{n+1}^{n-1}$ ,
欲证 $F_n^n<F_{n+1}^{n-1}$ ,只需证 $G_n^n<E_{n+1}^{n-1}$ ,
即证 $\left(\frac{E_{n+1}}{G_n}\right)^n>E_{n+1}$ .
因为 $E_{n+1}=\frac{\varphi^{n+1}-\varphi^{-n-1}}{\sqrt{5}}<\frac{\varphi^{n+1}}{\sqrt{5}}$ ,
故只需证明 $\left(\frac{E_{n+1}}{G_n}\right)^n>\frac{\varphi^{n+1}}{\sqrt{5}}$ .
我们有

\[
\begin{aligned}
\frac{E_{n+1}}{G_n} & =\frac{\varphi^{n+1}-\varphi^{-n-1}}{\varphi^n+\varphi^{-n}}=\frac{\varphi^{n+1}\left(1-\varphi^{-2 n-2}\right)}{\varphi^n\left(1+\varphi^{-2 n}\right)} \\
& =\varphi \cdot \frac{1+\varphi^{-2 n}-\varphi^{-2 n}-\varphi^{-2 n-2}}{1+\varphi^{-2 n}} \\
& =\varphi \cdot\left(1-\frac{\varphi^{-2 n}+\varphi^{-2 n-2}}{1+\varphi^{-2 n}}\right) \\
& >\varphi \cdot\left[1-\left(\varphi^{-2 n}+\varphi^{-2 n-2}\right)\right] .
\end{aligned}
\]


又因为 $-\left(\varphi^{-2 n-2}+\varphi^{-2 n}\right)>-2$ ,
由 Bernoulli 不等式得

\[
\begin{aligned}
\left(\frac{E_{n+1}}{G_n}\right)^n & >\varphi^n \cdot\left[1-\left(\varphi^{-2 n-2}+\varphi^{-2 n}\right)\right]^n \\
& >\varphi^n\left[1-n\left(\varphi^{-2 n-2}+\varphi^{-2 n}\right)\right]
\end{aligned}
\]


所以欲证 $\left(\frac{E_{n+1}}{G_n}\right)^n>\frac{\varphi^{n+1}}{\sqrt{5}}$ ,
只需证明 $1-n\left(\varphi^{-2 n-2}+\varphi^{-2 n}\right)>\frac{\varphi}{\sqrt{5}}$ ,
这等价于证明 $\frac{\varphi^{2 n}}{n}>\frac{\sqrt{5}\left(1+\varphi^{-2}\right)}{\sqrt{5}-\varphi}$ .
因为 $\frac{\varphi^{2 n}}{n}$ 单调递增,所以 $\frac{\varphi^{2 n}}{n} \geqslant \frac{\varphi^8}{4}$ .
因此只需证明 $\frac{\varphi^8}{4}>\frac{\sqrt{5}\left(1+\varphi^{-2}\right)}{\sqrt{5}-\varphi}$ .
因为 $\frac{\sqrt{5}\left(1+\varphi^{-2}\right)}{\sqrt{5}-\varphi}=5, \frac{\varphi^8}{4}>\frac{\left(\frac{3}{2}\right)^8}{4}=\frac{3^8}{2^{10}}>6$(这是
因为 $3^7=2187>2^{11}=2048$ ),
所以 $\frac{\varphi^8}{4}>\frac{\sqrt{5}\left(1+\varphi^{-2}\right)}{\sqrt{5}-\varphi}$ .
因此当 $n \geqslant 4$ 时,$F_n^n<F_{n+1}^{n-1}$ 成立.
综上,当 $n \geqslant 3$ 时 $F_n^n<F_{n+1}^{n-1}$ ,
即 $\log _{F_{n+1}} F_n<\frac{n-1}{n}$ .
于是当 $n \geqslant 3$ 时,$\frac{n-2}{n-1}<\log _{F_{n+1}} F_n<\frac{n-1}{n}$ 成立.

Comment

现在很难静下心来看这么长的证明鸟😥  Posted at 2024-4-7 17:59

手机版Mobile version|Leisure Math Forum

2025-4-20 22:23 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list