Forgot password?
 Create new account
View 170|Reply 4

[不等式] 花式证 $2^{50}<3^{33}$

[Copy link]

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2024-11-26 11:48:27 |Read mode
源自知乎提问,虽然短短几行,其实也是凑了好久的




:如何比较 2^50和3^33?




50 个 2 的和为 100 与 33 个 3 的和为 99 大约是相等的,相当于大约将 100 拆成几个自然的和,我们知道,当拆出的自然数越接近于 e 时,这些数的乘积越大,于是猜测 $2^{50}<3^{33}$ ,下面证明猜测成立.

由均值不等式 \begin{align*}
2^{50}&=2^{34}\cdot 2^{16}\\[1ex]
&=4^{17}\cdot2^{16}\\[1ex]
&=\underbrace{4\cdot 4\cdots 4}_{17\,\text {个}}\cdot \underbrace{2\cdot 2\cdots2}_{16\,\text{个}}\\[1ex]
&\qquad\,{\color{blue}{(\,\text{尝试失败} \,4\cdot 17+2\cdot 16=100>33\cdot 3, \,\text{保留}\,)}}\\[1ex]
&=\underbrace{4\cdot 4\cdots 4}_{14\,\text {个}}\cdot \underbrace{2\cdot 2\cdots2}_{12\,\text{个}}\cdot {\color{red}{\frac{1024}{(8/3)^6} \cdot \frac 83\cdot \frac 83\cdot \frac 83\cdot \frac 83\cdot \frac 83\cdot \frac 83}}\\[1ex]
&<\left(\frac{4\times14+2\times12+\frac{729}{256}+\frac 83\times 6}{33}\right)^{33}\\[1ex]
&=\left(\frac{25305/256}{33}\right)^{33}\\[1ex]
&<3^{33}.
\end{align*} 猜想得到证实.

PS:那个 8/3 其实是 $\mathrm e$ 的近似值.
isee=freeMaths@知乎

1

Threads

104

Posts

1771

Credits

Credits
1771

Show all posts

Aluminiumor Posted at 2024-11-26 12:25:12
写个伯努利不等式的证法:
$$\frac{3^{33}}{2^{50}}=\frac34\cdot\left(\frac98\right)^{16}>\frac34\cdot\left(1+16\cdot\frac18\right)=\frac94>1$$

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

 Author| isee Posted at 2024-11-26 12:30:55
Aluminiumor 发表于 2024-11-26 12:25
写个伯努利不等式的证法:
$$\frac{3^{33}}{2^{50}}=\frac34\cdot\left(\frac98\right)^{16}>\frac34\cdot\ ...
作商也是常规手法,不过,利用 Bernoulli 不等式还是需要观察力的👍
isee=freeMaths@知乎

1

Threads

104

Posts

1771

Credits

Credits
1771

Show all posts

Aluminiumor Posted at 2024-11-26 15:40:35
花式的想不出,再来个简朴的😂
证明加强式:
$$2^5\cdot2^{50}<3^2\cdot3^{33}\Longleftrightarrow2^{55}<3^{35}\Longleftrightarrow2^{11}<3^7\Longleftrightarrow2048<2187$$

Rate

Number of participants 1威望 +1 Collapse Reason
isee + 1 赞一个!

View Rating Log

7

Threads

349

Posts

2809

Credits

Credits
2809

Show all posts

睡神 Posted at 2024-12-11 20:39:14 From the mobile phone
$3^{33}=\dfrac{1}{3}\times 9^{17}=\dfrac{1}{3}\times (8+1)^{17}>\dfrac{1}{3}\times (8^{17}+17\times 8^{16})>8^{17}=2^{51}>2^{50}$
除了不懂,就是装懂

手机版Mobile version|Leisure Math Forum

2025-4-21 19:20 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list