Forgot password?
 Create new account
View 171|Reply 2

[函数] 一道三角函数值比较大小问题

[Copy link]

109

Threads

226

Posts

2915

Credits

Credits
2915

Show all posts

facebooker Posted at 2024-11-27 22:08:45 |Read mode
证明:$\dfrac{2\cos1}{2\sin1-1}>\tan1$

276

Threads

691

Posts

6120

Credits

Credits
6120

Show all posts

力工 Posted at 2024-11-28 16:01:28
Last edited by 力工 at 2024-11-28 16:50:00好像可以直接导数?设$tanx=t\in(1,\sqrt{3})$,则
函数$f(t)=t-\frac{1}{t}-\sqrt{1+t^2}$,求导,得
$f'(t)=\frac{(\sqrt{(t^2+1)^3}-t^3}{t^2\sqrt{1+t^2}}$,
在区间内为正。$1<tan1<\sqrt{3}$.

1

Threads

19

Posts

344

Credits

Credits
344
QQ

Show all posts

ZCos666 Posted at 2025-3-19 12:33:16
直接比就完了,即证$\dfrac{2\cos1}{2\sin1-1}-\dfrac{\sin1}{\cos1}>0$

由$\sin1>\sin\dfrac{\pi}{6}=\dfrac{1}{2},\cos1>0$知

即证$2\cos^{2}1-2\sin^{2}1+\sin1>0$

即证$-4\sin^{2}1+\sin1+2>0$,即证$\sin1<\dfrac{1+\sqrt{33}}{8}$

熟知$x>0:\sin{x}<x-\dfrac{x^{3}}{6}+\dfrac{x^{5}}{120}$

于是有$\sin1<1-\dfrac{1}{6}+\dfrac{1}{120}=\dfrac{101}{120}$

往证$\dfrac{101}{120}<\dfrac{1+\sqrt{33}}{8}$

显然成立,得证

手机版Mobile version|Leisure Math Forum

2025-4-21 19:26 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list