Forgot password?
 Register account
View 300|Reply 2

[函数] 一道三角函数值比较大小问题

[Copy link]

107

Threads

225

Posts

2905

Credits

Credits
2905

Show all posts

facebooker Posted 2024-11-27 22:08 |Read mode
证明:$\dfrac{2\cos1}{2\sin1-1}>\tan1$

277

Threads

546

Posts

5409

Credits

Credits
5409

Show all posts

力工 Posted 2024-11-28 16:01
Last edited by 力工 2024-11-28 16:50好像可以直接导数?设$tanx=t\in(1,\sqrt{3})$,则
函数$f(t)=t-\frac{1}{t}-\sqrt{1+t^2}$,求导,得
$f'(t)=\frac{(\sqrt{(t^2+1)^3}-t^3}{t^2\sqrt{1+t^2}}$,
在区间内为正。$1<tan1<\sqrt{3}$.

1

Threads

15

Posts

334

Credits

Credits
334
QQ

Show all posts

ZCos666 Posted 2025-3-19 12:33
直接比就完了,即证$\dfrac{2\cos1}{2\sin1-1}-\dfrac{\sin1}{\cos1}>0$

由$\sin1>\sin\dfrac{\pi}{6}=\dfrac{1}{2},\cos1>0$知

即证$2\cos^{2}1-2\sin^{2}1+\sin1>0$

即证$-4\sin^{2}1+\sin1+2>0$,即证$\sin1<\dfrac{1+\sqrt{33}}{8}$

熟知$x>0:\sin{x}<x-\dfrac{x^{3}}{6}+\dfrac{x^{5}}{120}$

于是有$\sin1<1-\dfrac{1}{6}+\dfrac{1}{120}=\dfrac{101}{120}$

往证$\dfrac{101}{120}<\dfrac{1+\sqrt{33}}{8}$

显然成立,得证

Mobile version|Discuz Math Forum

2025-6-5 23:06 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit