Forgot password?
 Create new account
View 119|Reply 5

[不等式] 比较b,c有没有其它方法

[Copy link]

178

Threads

236

Posts

2629

Credits

Credits
2629

Show all posts

hjfmhh Posted at 2025-4-11 20:48:14 |Read mode
Last edited by hbghlyj at 2025-4-11 21:18:24设 $a=2^{\sqrt{\pi}}, b=\log _2 \pi, c=\sqrt{\pi}$,则 $b<c$.(C
A.$c>b>a$
B.$b>c>a$
C.$a>c>b$
D.$a>b>c$

[解析](1)由 $a=2^{\sqrt{\pi}}>2,1<b=\log _2 \pi<\log _2 4=2$ , $1<c=\sqrt{\pi}<\sqrt{4}=2$ ,知 $a>b, a>c$ .又 $\pi^3<2^5$ ,所以 $\pi<2^{\frac{5}{3}}$ ,故 $b=\log _2 \pi<\log _2 2^{\frac{5}{3}}=\frac{5}{3}$ 又 $\left(\frac{5}{3}\right)^2=\frac{25}{9}<\pi$ ,故 $\frac{5}{3}<\sqrt{\pi}=c$ ,所以 $b<c$ ,因此可得 $a>c>b$ 。故选 C.

这题b,c比较大小时,用了不等式$\pi^3<2^5$,想不到,有没有其它方法?

22

Threads

70

Posts

607

Credits

Credits
607

Show all posts

lxz2336831534 Posted at 2025-4-11 23:18:39 From the mobile phone
Last edited by hbghlyj at 2025-4-11 23:28:06\[
\frac{1}{2}b = \log_2 c
\]
当 $c \in (2,4)$ 且 $b \in (2,4)$ 时,
\[
b = 2\log_2 c > c.
\]
反之,
\[
b = 2\log_2 c < c.
\]
题中,由于 $c$ 与 $b$ 均不属于 $(2,4)$,故有$b < c$.

178

Threads

236

Posts

2629

Credits

Credits
2629

Show all posts

 Author| hjfmhh Posted at 2025-4-12 14:27:54
lxz2336831534 发表于 2025-4-11 23:18
\[
\frac{1}{2}b = \log_2 c
\]
请问:当c在(2,4)且b在(2,4)时b=2log2(c)>c,这是为什么,是充要的吗?

178

Threads

236

Posts

2629

Credits

Credits
2629

Show all posts

 Author| hjfmhh Posted at 2025-4-12 14:52:24
Last edited by hbghlyj at 7 days ago
lxz2336831534 发表于 2025-4-11 23:18
\[
\frac{1}{2}b = \log_2 c
\]
应该是这样理解的吧
\begin{aligned}
& f(c)=2 \log _2c-c, c \in(2, 4) \\
& f(2)=0, f(4)=0 . \\
& f'(c)=2 \cdot \frac{1}{c\ln 2}-1, 当2<c<\frac{2}{\ln 2} \text { 时, } f(c) \uparrow, 当 \frac{2}{\ln 2}<c<4 时 f(c) \downarrow \\
& \text{故 } f(c)>f(2)=f(4)=0 . \\
& \therefore\text{当 } c \in(2,4) \text { 时 } 2 \log _2c>c \text { 即 } b>c . \\
& \text{当 } c \notin(2,4) \text { 时 } 2 \log _2c<c \text { 即 } b<c .
\end{aligned}

1

Threads

104

Posts

1771

Credits

Credits
1771

Show all posts

Aluminiumor Posted at 2025-4-12 23:03:49
$\log_2\pi<\sqrt{\pi}\Longleftrightarrow\dfrac{\ln\pi}{\ln2}<\sqrt{\pi}\Longleftrightarrow\dfrac{\ln\sqrt{\pi}}{\sqrt{\pi}}<\dfrac{\ln2}{2}$
由 $\sqrt{\pi}<2$ 及 $\dfrac{\ln x}{x}$ 的单调性,得证.

Comment

谢谢  Posted at 7 days ago

手机版Mobile version|Leisure Math Forum

2025-4-20 22:14 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list