Forgot password
 Register account
View 279|Reply 9

n次多项式所有根都是实数,求证实根上界的充要条件

[Copy link]

414

Threads

1641

Posts

15

Reputation

Show all posts

abababa posted 2024-4-3 19:44 |Read mode
设$f(x)$是首一实系数$n$次多项式,且$n$个根都是实根,求证实数$b$是$f(x)$的实根上界的充要条件是:$f(b),f'(b),\cdots,f^{(n)}(b)>0$。

3211

Threads

7832

Posts

52

Reputation

Show all posts

hbghlyj posted 2024-4-4 03:41
$\Longleftarrow$
若$f(b),f'(b),\dots,f^{(n)}(b)>0$,则$\forall x>b:$
\[x-b>0\implies f(x)=f(b)+\sum_{k=1}^n\frac{f^{(k)}(b)}{k!}(x-b)^k\ge f(b)>0\]所以$b$是$f(x)$的实根上界。

$\Longrightarrow$
设$f$的根为$x_1\le x_2\le\dots\le x_n$,由Rolle中值定理,$f'$在每个区间$[x_1,x_2],\dots,[x_{n-1},x_n]$有根,但$f'$至多有$n-1$个实根,故$f'$在每个区间$[x_1,x_2],\dots,[x_{n-1},x_n]$恰有一个根。以此類推$\forall k=1,\dots,n$,$f^{(k)}$有$n-k$个实根,都属于$[x_1,x_n]$,
若$b>x_n$,$f^{(k)}$的根都$<b$,且$f^{(k)}$首一,所以 $f^{(k)}(b)>0$.

414

Threads

1641

Posts

15

Reputation

Show all posts

original poster abababa posted 2024-4-4 12:00
hbghlyj 发表于 2024-4-4 03:41
$\Longleftarrow$
若$f(b),f'(b),\dots,f^{(n)}(b)>0$,则$\forall x>b:$
\[x-b>0\implies f(x)=f(b)+\sum_ ...
原来如此,多项式用泰勒展开到$\deg(f)$后余项是零。谢谢。

3211

Threads

7832

Posts

52

Reputation

Show all posts

hbghlyj posted 2024-4-5 03:23
Lagrange's and Cauchy's bounds
Lagrange and Cauchy were the first to provide upper bounds on all complex roots. Lagrange's bound is
$$ \max \left\{1,\sum _{i=0}^{n-1}\left|{\frac {a_{i}}{a_{n}}}\right|\right\}, $$
and Cauchy's bound is
$$ 1+\max \left\{\left|{\frac {a_{n-1}}{a_{n}}}\right|,\left|{\frac {a_{n-2}}{a_{n}}}\right|,\ldots ,\left|{\frac {a_{0}}{a_{n}}}\right|\right\} $$
Proof of Lagrange's and Cauchy's bounds

If z is a root of the polynomial, and |z| ≥ 1 one has
$$ |a_{n}||z^{n}|=\left|\sum _{i=0}^{n-1}a_{i}z^{i}\right|\leq \sum _{i=0}^{n-1}|a_{i}z^{i}|\leq \sum _{i=0}^{n-1}|a_{i}||z|^{n-1}. $$
Dividing by $ |a_{n}||z|^{n-1}, $ one gets
$$ |z|\leq \sum _{i=0}^{n-1}{\frac {|a_{i}|}{|a_{n}|}}, $$
which is Lagrange's bound when there is at least one root of absolute value larger than 1. Otherwise, 1 is a bound on the roots, and is not larger than Lagrange's bound.

Similarly, for Cauchy's bound, one has, if |z| ≥ 1,
$$ |a_{n}||z^{n}|=\left|\sum _{i=0}^{n-1}a_{i}z^{i}\right|\leq \sum _{i=0}^{n-1}|a_{i}z^{i}|\leq \max |a_{i}|\sum _{i=0}^{n-1}|z|^{i}={\frac {|z|^{n}-1}{|z|-1}}\max |a_{i}|\leq {\frac {|z|^{n}}{|z|-1}}\max |a_{i}|. $$
Thus
$$ |a_{n}|(|z|-1)\leq \max |a_{i}|. $$
Solving in |z|, one gets Cauchy's bound if there is a root of absolute value larger than 1. Otherwise the bound is also correct, as Cauchy's bound is larger than 1.

3211

Threads

7832

Posts

52

Reputation

Show all posts

hbghlyj posted 2024-4-5 03:25
abababa 发表于 2024-4-4 04:00
原来如此,多项式用泰勒展开到$\deg(f)$后余项是零。谢谢。
$f^{(k)}$的根都属于$[x_1,x_n]$,
这个是Gauss–Lucas theorem的特殊情况。
Special cases
In addition, if a polynomial of degree n of real coefficients has n distinct real zeros $ x_{1}<x_{2}<\cdots <x_{n}, $ we see, using Rolle's theorem, that the zeros of the derivative polynomial are in the interval $ [x_{1},x_{n}] $ which is the convex hull of the set of roots.

3211

Threads

7832

Posts

52

Reputation

Show all posts

hbghlyj posted 2024-4-5 03:34
hbghlyj 发表于 2024-4-4 19:25
if a polynomial of degree n of real coefficients has n distinct real zeros $ x_{1}<x_{2}<\cdots <x_{n}, $
这里说,这n个实根需要不同,1#没有这个条件呀?

使用 Rolle's theorem 需要这n个实根不同

那么上面的证明正确吗

3211

Threads

7832

Posts

52

Reputation

Show all posts

hbghlyj posted 2024-4-5 04:12
abababa 发表于 2024-4-4 04:00
原来如此,多项式用泰勒展开到$\deg(f)$后余项是零。
没有用到“多项式”这个条件,有没有一般的实解析函数,满足$f^{(k)}\ge0,\forall k\ge0$?

3211

Threads

7832

Posts

52

Reputation

Show all posts

hbghlyj posted 2024-4-5 04:14
hbghlyj 发表于 2024-4-4 20:12
没有用到“多项式”这个条件,有没有一般的实解析函数,满足$f^{(k)}\ge0,\forall k\ge0$? ...
  • $f(x) = -\log (-x),−1≤x<0$,求证$f^{(n)}(x)\geq 0\forall n=0,1,2,\ldots$
  • $f(x)=\sin ^{-1}x,0≤x≤1$,求证$f^{(n)}(x)\geq 0\forall n=0,1,2,\ldots$
  • $f(x)=\tanh^{-1}x,0≤x≤1$,求证$f^{(n)}(x)\geq 0\forall n=0,1,2,\ldots$

3211

Threads

7832

Posts

52

Reputation

Show all posts

hbghlyj posted 2024-4-5 04:14
$f(x) = -\log (-x),−1≤x<0$,求证$f^{(n)}(x)\geq 0\forall n=0,1,2,\ldots$
等价于$\log(1 + 1/x),x>0$是completely monotone function
由Bernstein定理,等价于$\mathcal{L}^{-1}$[Log[1 + 1/s], s, t]$=(1 - e^{-t})/t\geq 0$
$f(x)=\sin ^{-1}x,0≤x≤1$,求证$f^{(n)}(x)\geq 0\forall n=0,1,2,\ldots$
等价于$\sin^{-1}(1/x),x>0$是completely monotone function
由Bernstein定理,等价于$\mathcal{L}^{-1}$[ArcSin[1/s], s, t]$\geq 0$
Mathematica求出来是1/2 (-2 - π BesselI[1, t] StruveL[0, t] + BesselI[0, t] (2 + π StruveL[1, t]))很复杂,但确实$\geq 0$
$f(x)=\tanh^{-1}x,0≤x≤1$,求证$f^{(n)}(x)\geq 0\forall n=0,1,2,\ldots$
等价于$\tanh^{-1}(1/x),x>0$是completely monotone function
由Bernstein定理,等价于$\mathcal{L}^{-1}$[ArcTanh[1/s], s, t]$=\frac{\sinh (t)}{t}\geq 0$

3211

Threads

7832

Posts

52

Reputation

Show all posts

hbghlyj posted 2024-4-5 05:05
$f(x)=\sum_k a_kx^k,a_k\ge0$,则$f^{(n)}(x)\geq 0,\forall x>0,\forall n=0,1,2,\ldots$
等价于$f(1/x),x>0$是completely monotone function
由Bernstein定理,等价于$\mathcal{L}^{-1}[f(\frac1s), s, t]=\sum_k a_k\mathcal{L}^{-1}[\frac1{s^k}, s, t]=\sum_k \frac{a_k}{\Gamma(k)}t^{k - 1}\ge0$

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-20 05:40 GMT+8

Powered by Discuz!

Processed in 0.019703 seconds, 45 queries