Forgot password?
 Create new account
View 161|Reply 2

[不等式] 二元多项式有2个极大值点而没有其他驻点,有低于6次的例子吗

[Copy link]

3147

Threads

8497

Posts

610K

Credits

Credits
66183
QQ

Show all posts

hbghlyj Posted at 2024-12-27 04:14:14 |Read mode
Last edited by hbghlyj at 2024-12-27 18:51:00二元多项式在$\mathbb{R}^2$可能有两个极大值点而没有其他驻点。
例子:Counting Critical Points of Real Polynomials in Two Variables第7页
$$f(x,y)=-(x^2-1)^2-(x^2y-x-1)^2$$在 $(-1,0)$ 和 $(1,2)$ 处有两个极大值而没有其他驻点。WolframAlpha

ResourceFunction["StationaryPoints"][-(x^2-1)^2-(x^2y-x-1)^2,{x,y}]
download (1).gif
Show[StreamPlot[Evaluate[-Grad[-(x^2-1)^2-(x^2 y-x-1)^2,{x,y}]],{x,-1.5,1.5},{y,-0.5,2.5},MaxRecursion->5],Graphics[{Red,PointSize[0.025],Point[{-1,0}],Point[{1,2}]}]] .png

问题:有低于6次的例子吗?

3147

Threads

8497

Posts

610K

Credits

Credits
66183
QQ

Show all posts

 Author| hbghlyj Posted at 2024-12-27 23:31:22
前帖的4次例子$\left[\left(x-\frac{1}{3}\right)^2+\left(y-\frac{2}{3}\right)^2\right]\cdot\left[\left(x-\frac{2}{3}\right)^2+\left(y-\frac{1}{3}\right)^2\right]$有一个鞍点$(\frac12,\frac12)$不符合条件。

对称多项式都不符合条件吗?

3147

Threads

8497

Posts

610K

Credits

Credits
66183
QQ

Show all posts

 Author| hbghlyj Posted at 2024-12-29 15:20:19

手机版Mobile version|Leisure Math Forum

2025-4-21 01:30 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list