Forgot password
 Register account
View 266|Reply 3

[数论] $\sqrt{p_1},…,\sqrt{p_n}$表成同一数$α$的有理系数多项式,$α$的次数$=2^n$

[Copy link]

3218

Threads

7837

Posts

52

Reputation

Show all posts

hbghlyj posted 2024-4-16 21:57 |Read mode
$p_1,\dots,p_n$为不同的质数,则
$\sqrt{p_1},\sqrt{p_2},…,\sqrt{p_n}$都能表成代数数$α$的有理系数多项式,$α$的次数$=2^n$
$\sqrt{p_1p_2},\sqrt{p_1p_3},…,\sqrt{p_{n-1}p_n}$都能表成代数数$α$的有理系数多项式,$α$的次数$=2^{n-1}$
$\sqrt{p_1p_2p_3},\sqrt{p_1p_2p_4},…,\sqrt{p_{n-2}p_{n-1}p_n}$都能表成代数数$α$的有理系数多项式,$α$的次数$=2^{n-2}$
$…$
$\sqrt{p_1p_2…p_n}$都能表成代数数$α$的有理系数多项式,$α$的次数$=2^1$.

如何证明?

例如:$n=3$
$\sqrt2,\sqrt3,\sqrt5$ 都能表成代数数$\alpha$的有理系数多项式,$2^n=8$
$\alpha={}$root of $x^8 - 40 x^6 + 352 x^4 - 960 x^2 + 576$ near $x = 5.38233$
wolframalpha.com/input?i=ToNumberField[{Sqrt[ … ], Sqrt[3],Sqrt[5]}]

$\sqrt6,\sqrt{10},\sqrt{15}$ 都能表成代数数$\alpha$的有理系数多项式,$2^{n-1}=4$
$\alpha={}$root of $x^4 - 62 x^2 - 240 x - 239$ near $x = 9.48475$
wolframalpha.com/input?i=ToNumberField[{Sqrt[ …  Sqrt[15],Sqrt[10]}]

$\sqrt{30}$ 都能表成代数数$\alpha$的有理系数多项式,$2^1=2$
$\alpha={}$root of $x^2-30$

3218

Threads

7837

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2024-4-16 22:07
例如:$n=4$
$\sqrt{2 \times 3}, \sqrt{2 \times 5}, \sqrt{2 \times 7}, \sqrt{3 \times 5}, \sqrt{3 \times 7}, \sqrt{5 \times 7}$ 都能表成代数数$\alpha$的有理系数多项式,$2^{n-1}=8$
$\alpha={}$root of $x^8 - 404 x^6 - 3952 x^5 - 946 x^4 + 112864 x^3 + 309276 x^2 - 332720 x - 1155335$ near $x = 23.7251$
wolframalpha.com/input?i=ToNumberField[{Sqrt[ … qrt[3*7],Sqrt[5*7]}]

3218

Threads

7837

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2024-4-16 22:44
hbghlyj 发表于 2024-4-16 13:57
$\sqrt6,\sqrt{10},\sqrt{15}$ 都能表成代数数$\alpha$的有理系数多项式,$2^{n-1}=4$
$\alpha={}$root of $x^4 - 62 x^2 - 240 x - 239$ near $x = 9.48475$
可以写出 $x^4 - 62 x^2 - 240 x - 239$ 的根:
$\sqrt{6}+\sqrt{10}+\sqrt{15}$
$\sqrt{6}-\sqrt{10}-\sqrt{15}$
$-\sqrt{6}+\sqrt{10}-\sqrt{15}$
$-\sqrt{6}-\sqrt{10}+\sqrt{15}$

3218

Threads

7837

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2024-4-16 22:48
hbghlyj 发表于 2024-4-16 13:57
$\sqrt{p_1p_2},\sqrt{p_1p_3},…,\sqrt{p_{n-1}p_n}$都能表成代数数$α$的有理系数多项式,$α$的次数$=2^{n-1}$
令 $α=(\sqrt{p_1}+\dots+\sqrt{p_n})^2$,那么$α$的极小多项式的根是$(\sqrt{p_1}\pm\sqrt{p_2}\pm\dots\pm\sqrt{p_n})^2$,共有$2^{n-1}$个根,所以$α$的极小多项式的次数是$2^{n-1}$.

如何证明$\sqrt{p_1p_2},\sqrt{p_1p_3},…,\sqrt{p_{n-1}p_n}$都能表成代数数$α$的有理系数多项式

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 12:03 GMT+8

Powered by Discuz!

Processed in 0.017239 seconds, 45 queries