Forgot password?
 Create new account
View 222|Reply 6

[函数] Descartes’ rule of signs

[Copy link]

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2023-8-29 00:39:57 From the mobile phone |Read mode
Last edited by hbghlyj at 2024-12-9 11:06:00GR0568
17. How many real roots does the polynomial $2x^5+8x-7$ have?

Unofficial solution:
Since there is one sign change in $2 x^5+8 x-7$, Descartes' rule of signs implies $2 x^5+8 x-7$ has one positive zero. To find the number of negative zeros, consider $2(-x)^5+8(-x)-7=-2 x^5-8 x-7$. There are no sign changes which implies there are no negative zeros. Thus, $2 x^5+8 x-7$ has one real zero. Adobe Scan Aug 29, 2023_1.jpg

$++-$变号数为1,故只有1个正根;
$---$变号数为0,故没有负根。

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2023-8-29 00:46:10
也可以从图象看出只有1个实根

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2023-8-29 17:15:16
++-, 这是什么定理?
isee=freeMaths@知乎

701

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2023-8-29 17:23:57
isee 发表于 2023-8-29 17:15
++-, 这是什么定理?
斯图姆定理吧,你应该也有印象的

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2023-8-29 18:58:56
Last edited by hbghlyj at 2024-3-26 13:51:00
isee 发表于 2023-8-29 17:15
++-, 这是什么定理?

在1#的第一句就说了:Descartes’ rule of signs

Suppose $f(x)=a_n x^n+a_{n-1} x^{n-1}+\ldots+a_1 x+a_0$. Then the number of positive zeros of $f$ is equal to the number of sign changes of $f(x)$ or an even number fewer. Furthermore, the number of negative zeros of $f$ is equal to the number of sign changes of $f(-x)$ or an even number fewer.

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2023-8-29 19:01:32
Last edited by hbghlyj at 2024-3-26 13:50:00
《几何》勒内·笛卡尔 第71页

一个方程有多少真根(正根)
我们还能确定任一方程所能有的真根与假根的数目,办法如下: 一个方程的真根数目跟它所含符号的变化、即从$+$到$-$或从$-$到$+$的多寡一致; 而其假根的数目, 跟连续找到两个$+$号或两个$-$号的次数一样。
于是, 在最后一个方程中, 因 $+x^4$ 之后是 $-4 x^3$, 出现了从$+$到$-$的一次符号变化, $-19 x^2$ 之后是 $+106 x$, $+106 x$ 之后是 $-120$, 又出现了两次变化, 所以找们知道有三个真根; 因 $-4 x^3$ 之后是 $-19 x^2$. 那么有一个假根。
Untitled.png

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

 Author| hbghlyj Posted at 2023-8-29 19:09:40
Last edited by hbghlyj at 2024-12-23 16:17:00Wikipedia有一个简短的归纳法的证明:
引理:序列$(a_n,\dots,a_0)$的变号数$V(f)$与正根数$Z(f)$同奇偶
证明
$V(f)$与序列$(a_n,a_0)$的变号数同奇偶(因为每增加变号都与相邻两项不同,所以会加入2个变号)。
图象上,从$\infty$到$0$的根数$Z(f)$与$(f(\infty),f(0))$的序列变号数同奇偶,即与$(a_n,a_0)$的序列变号数同奇偶,即与$V(f)$同奇偶

由引理,$V(f)-Z(f)$是偶数,还剩证明$Z(f)\le V(f)$
对$ n $归纳. 当$ n=0,1 $时显然. 设$ n\geq 2 $.
由归纳假设 $ Z(f')=V(f')-2s $ 对某个 $ s\geq 0 $.
由Rolle中值定理存在$f'$的根在每两个$f$的根之间,故$f'$至少有$Z(f)-1$个正根,即$ Z(f')\geq Z(f)-1$
$f'$的系数符号和$f$的前$n$项系数符号相同,只是$V(f)$比$V(f')$多一个常数项符号。
若 $ a_{0}a_{1}>0 $, 则$ V(f')=V(f) $, 否则$ V(f')=V(f)-1 $. 在两种情况下都有$ V(f')\leq V(f) $
根据这两个不等式$$ Z(f)\leq Z(f')+1=V(f')-2s+1\leq V(f)-2s+1\leq V(f)+1$$
因$V(f)-Z(f)$是偶数,必有$Z(f)\le V(f)$

手机版Mobile version|Leisure Math Forum

2025-4-20 22:28 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list