Forgot password
 Register account
View 7|Reply 1

[函数] $y=A \cos m x+B \sin m x$,$D_x^2 y+m^2 y=0$

[Copy link]

3172

Threads

7934

Posts

48

Reputation

Show all posts

hbghlyj posted 2025-6-27 17:33 |Read mode
对函数$y = A\cos(mx) + B\sin(mx)$求一阶导,可得$D_xy = -A m\sin(mx) + B m\cos(mx)$.
进一步求二阶导,得到$D_x^2y= -A m^2\cos(mx) - B m^2\sin(mx) = -m^2\bigl(A\cos(mx) + B\sin(mx)\bigr).$
由于原式中 $y = A\cos(mx) + B\sin(mx)$,故有 $D_x^2y+m^2 y=0$.

3172

Threads

7934

Posts

48

Reputation

Show all posts

original poster hbghlyj posted 2025-6-27 17:47
推广:设
$$
y = A\cos(mx) + B\sin(mx) + P_n(x),
$$
其中 $P_n(x)$ 是次数为 $n$ 的多项式。我们要证明
$$
D_x^{n+3}y + m^2D_x^{n+1}y = 0.
$$
多项式 $P_n(x)$ 在求导 $n+1$ 次之后必为零:$D_x^{n+1}P_n(x)=0$
而对剩下部分 $y_c$,已知
$$
D_x^2y_c + m^2y_c = 0.
$$
对该等式两边再求 $n+1$ 次导数:$D_x^{n+3}y_c+ m^2D_x^{n+1}y_c= 0$.

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-6-29 17:57 GMT+8

Powered by Discuz!

Processed in 0.017867 seconds, 41 queries