Forgot password?
 Create new account
View 156|Reply 5

$τ∈PGL(2,ℂ)$ fixes either 1 or 2 points

[Copy link]

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2023-4-25 00:15:05 |Read mode
Last edited by hbghlyj at 2023-4-27 11:24:00举例说明:$\mathbb P(\mathbb R^2)$上存在没有不动点的射影变换。[我想的是$[x,y]\mapsto[y,-x]$]
证明:$\mathbb P(\mathbb R^3)$上每个射影变换都有一个不动点。[我想,特征多项式是3次的,必有实根]
举例说明:$\mathbb P(\mathbb R^4)$上存在没有不动点的射影变换。

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

 Author| hbghlyj Posted at 2023-4-25 00:29:34
取$A=\begin{pmatrix}
0 & 0 & 0&-1\\
1 & 0 & 0& 0\\
0 & 1 & 0 & 0\\
0& 0& 1& 0
\end{pmatrix}$, 则$\chi_A(x)=x^4+1$无实根.
因此$\mathbb P(\mathbb R^4)$上的射影变换$$[x_0,x_1,x_2,x_3]\mapsto[-x_3,x_0,x_1,x_2]$$没有不动点.

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2023-4-25 15:02:42
改成连续映射也一样的, 用一下 Lefschetz 不动点定理或是一些其他的 mapping degree 就行了.

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

 Author| hbghlyj Posted at 2023-4-26 06:26:40

相关题

21Sheet1
7. (i) Let $\tau \in P G L(2, \mathbb{C})$, other than the identity. Show that $\tau$ fixes either one or two points. Show that this need not be true over other fields.
(ii) If $\tau$ fixes two points, show that there is an inhomogeneous co-ordinate $z$ on $\mathbb{C P}^1$ with respect to which
$$
\tau(z)=\lambda z, \quad \lambda \neq 0,1
$$
Is the same true over other fields?
(iii) Let $A_1, A_2, A_3$ be three distinct points in $\mathbb{C P}^1$ and let $n \geqslant 3$ be an integer. Show that there is $\tau \in \mathrm{PGL}(2, \mathbb{C})$ such that $\tau\left(A_1\right)=A_2, \tau\left(A_2\right)=A_3$ and $\tau$ has order $n$.

(i)我已经在2#解决了.
请问(ii)和(iii)怎么做呢

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2023-4-26 13:27:19
Last edited by Czhang271828 at 2023-4-26 13:51:00
hbghlyj 发表于 2023-4-26 06:26
21Sheet1

(i)我已经在2#解决了.
第二问: 实际上, $PGL(2,\mathbb C)\curvearrowright  \mathbb CP^1$ 和 $[GL(2,\mathbb C)\curvearrowright \mathbb C^2]/\mathbb C^\ast$ 没什么区别. 因此 (ii) 表明 $\tilde \tau:=\begin{pmatrix}a&b\\c&d\end{pmatrix}$ 有两个不同的特征根. 根据相似变换(换基底), 不妨直接设 $b=c=0$, $ a\neq d\neq 0$. 此时 $\tilde \tau ((1,1))=(\lambda_1,\lambda_2)$. 因此在 $/\mathbb C^\ast$ 的意义下就是 $\tau(1)=\lambda_1/\lambda_2\in \mathbb CP^1\setminus\{0,1\}$.

第三问可以仿照第二问. order = $n$ 的 $\tau\in PGL(2,\mathbb C)$ 都可以对角化成 $\tau_0\mathrm{diag}(\zeta_1,\zeta_2)$ 形式, 其中 $\zeta_{1,2}\in \sqrt[n]{1}$. 此处选取 $\zeta_1\neq \zeta_2$. 继而选取适当的 $\theta\in PGL(2,\mathbb C)$ 使得 $\tau=\theta\circ \tau_0\circ \theta^{-1}$ 即可.

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

 Author| hbghlyj Posted at 2023-4-27 08:59:09
(ii) 的最后一问Is the same true over other fields
假定了$\tau$有2个特征向量, 在$\mathbb R$上也是这样, 所以应该是true over any field吧

手机版Mobile version|Leisure Math Forum

2025-4-21 14:17 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list