Forgot password?
 Register account
View 305|Reply 4

[不等式] Carlson inequality

[Copy link]

3153

Threads

7906

Posts

610K

Credits

Credits
64096
QQ

Show all posts

hbghlyj Posted 2023-4-26 18:47 |Read mode
Encyclopedia of math
Let $\{a_n:1≤n<∞\}$ be non-negative numbers, not all zero. Then
\begin{equation}\label1
(∑a_n)^4<π^2∑a^2_n∑n^2a^2_n.\end{equation}The constant $π^2$ is best possible in the sense that there exists a sequence $\{a_n\}$ such that right-hand side of \eqref{1} is arbitrarily close to the left-hand side.

48

Threads

771

Posts

110K

Credits

Credits
13880
QQ

Show all posts

Czhang271828 Posted 2023-4-26 19:30
很经典的题目, 论坛里肯定出现过.

注意到对任意 $\lambda,\mu>0$, 总有
\begin{align*}
\left(\sum_{n\geq 1} a_n\right)^2&=\left(\sum_{n\geq 1} (\lambda+\mu n^2)^{-1}\right)\left(\sum_{n\geq 1} (\lambda+\mu n^2)a_n^2\right)\\
&\leq \int_0^\infty \dfrac{\mathrm dt}{\lambda +\mu t^2}\cdot \left(\lambda\sum_{n\geq 1}a_n^2+\mu \sum_{n\geq 1} n^2a_n^2\right)\\
&=\dfrac{\pi}{2\sqrt{\lambda \mu}}\cdot  \left(\lambda\sum_{n\geq 1}a_n^2+\mu \sum_{n\geq 1} n^2a_n^2\right).
\end{align*}
取 $\lambda^{-1}=\mu =\sqrt{\dfrac{\sum_{n\geq 1}a_n^2}{\sum_{n\geq 1}n^2a_n^2}}$ 即可.
无钱佮歹看、无样佮歹生、无汉草佮无文采、无学历佮无能力、无高度无速度无力度共闲无代志。(闽南话)
口号:疼惜生命,远离内卷。

3153

Threads

7906

Posts

610K

Credits

Credits
64096
QQ

Show all posts

 Author| hbghlyj Posted 2023-4-26 19:34
第一个 $=$ 是Cauchy-Schwarz不等式吗

3153

Threads

7906

Posts

610K

Credits

Credits
64096
QQ

Show all posts

 Author| hbghlyj Posted 2023-4-27 17:19
我觉得第一个 $=$ 应该是 $\le$

3153

Threads

7906

Posts

610K

Credits

Credits
64096
QQ

Show all posts

 Author| hbghlyj Posted 2025-4-9 23:01

Mobile version|Discuz Math Forum

2025-6-5 01:49 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit