Forgot password?
 Create new account
View 140|Reply 4

[函数] 3次方程有3个正根

[Copy link]

3151

Threads

8500

Posts

610K

Credits

Credits
66231
QQ

Show all posts

hbghlyj Posted at 2023-5-4 23:18:06 |Read mode
$l,m,n$为不同的正数, 则关于$x$的方程$$\frac1{x l - 1}+\frac1{x m - 1} + \frac1{x n - 1}= 1$$有3个正根.
来源:在此题中$l=18, m = 13, n = 9,x=\frac13$.

3151

Threads

8500

Posts

610K

Credits

Credits
66231
QQ

Show all posts

 Author| hbghlyj Posted at 2023-5-4 23:33:10
通分得\begin{equation}l m n x^3-2 x^2 (l m+m n+nl)+3 x (l+m+n)-4=0\label1\end{equation}因为$l,m,n$不同,所以$\frac1l,\frac1m,\frac1n$不是\eqref{1}的根.所以原方程的根(需要分母不为0)就是\eqref{1}的根.
From this answer, the necessary & sufficient conditions that the cubic equation $x^3+px^2+qx+r=0$ has three positive real roots is
\begin{array}l
\Delta \ge 0\\
p <0\\
q >0\\
r <0
\end{array}

现在已经有$p <0,q >0,r <0$,只需证明$\Delta \ge 0$.
用Minimize验证:
  1. In[]:= Minimize[{Discriminant[4+(-3 l-3 m-3 n) x+(2 l m+2 l n+2 m n) x^2-l m n x^3,x],l>0,m>0,n>0},{l,m,n}]
  2. Out[]= {0,{l->1,m->1,n->1}}
Copy the Code

那么应该是对的. 请问如何证明$\Delta \ge 0$

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

kuing Posted at 2023-5-5 00:13:08
这不是很显然吗?不妨设 `l>m>n`,令
\[f(x)=\frac 1{xl-1}+\frac 1{xm-1}+\frac 1{xn-1}-1,\]

\begin{align*}
f\left(\left(\frac1l\right)^+\right)&=+\infty, & f\left(\left(\frac1m\right)^-\right)&=-\infty,\\
f\left(\left(\frac1m\right)^+\right)&=+\infty, & f\left(\left(\frac1n\right)^-\right)&=-\infty,\\
f\left(\left(\frac1n\right)^+\right)&=+\infty, & f(+\infty)&=-1,
\end{align*}
所以在 `(1/l,1/m)`, `(1/m,1/n)`, `(1/n,+\infty)` 上分别至少有一根,而去分母是三次方程,至多三根,所以有且只有三正根。

Comment

已画图放在1#  Posted at 2023-5-5 02:41

3151

Threads

8500

Posts

610K

Credits

Credits
66231
QQ

Show all posts

 Author| hbghlyj Posted at 2023-5-5 00:13:50
kuing 发表于 2023-5-4 17:13
这不是很显然吗?令 `f(x)=\LHS-1`,不妨设 `l>m>n`,则
\begin{align*}
f\left(\left(\frac1l\right)^+\right)&=+\infty, & f\left(\left(\frac1m\right)^-\right)&=-\infty,\\
f\left(\left(\frac1m\right)^+\right)&=+\infty, & f\left(\left(\frac1n\right)^-\right)&=-\infty,\\
f\left(\left(\frac1n\right)^+\right)&=+\infty, & f(+\infty)&=-1,
\end{align*}
所以在 `(1/l,1/m)`, `(1/m,1/n)`, `(1/n,+\infty)` 上分别至少有一根,而去分母是三次方程,至多三根,所以有且只有三正根。
确实

手机版Mobile version|Leisure Math Forum

2025-4-22 01:52 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list