通分得\begin{equation}l m n x^3-2 x^2 (l m+m n+nl)+3 x (l+m+n)-4=0\label1\end{equation}因为$l,m,n$不同,所以$\frac1l,\frac1m,\frac1n$不是\eqref{1}的根.所以原方程的根(需要分母不为0)就是\eqref{1}的根.
From this answer, the necessary & sufficient conditions that the cubic equation $x^3+px^2+qx+r=0$ has three positive real roots is
\begin{array}l
\Delta \ge 0\\
p <0\\
q >0\\
r <0
\end{array}