找回密码
 快速注册
搜索
查看: 63|回复: 5

[数列] 对数凹序列是单峰的

[复制链接]

3149

主题

8386

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65391
QQ

显示全部楼层

hbghlyj 发表于 2023-5-8 22:21 |阅读模式
(wiki) A sequence $a = (a_0, a_1, ..., a_n)$ of nonnegative real numbers is called a logarithmically concave sequence, or a log-concave sequence for short, if $a_i^2 ≥ a_{i−1}a_{i+1}$ holds for $0 < i < n$ .
Examples of log-concave sequences are given by the binomial coefficients along any row of Pascal's triangle and the elementary symmetric means of a finite sequence of real numbers.


文章的abstract中说Clearly a log-concave sequence of positive terms is unimodal.
想了一个证明:
$\an$为对数凹序列, 则$\frac{a_i}{a_{i-1}}$单减.
设$a_{j-1}<a_j,a_j>a_{j+1}$,
那么$\frac{a_i}{a_{i-1}}$在$i=j+1$这一项就已经小于1了,
所以当$i>j+1$时$\frac{a_i}{a_{i-1}}<1$,所以$i>j+1$时$a_i$单减.

3149

主题

8386

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65391
QQ

显示全部楼层

 楼主| hbghlyj 发表于 2023-5-8 23:00
$\dbinom n0,\dbinom n1,\dots,\dbinom nn$是对数凹序列.
证明: $\dbinom nk^{2} /\dbinom n{k-1}\dbinom n{k+1}=\dfrac{(k+1)(n-k+1)}{k(n-k)}>1$


组合证明Richard P. Stanley (1989). Log-Concave and Unimodal Sequences in Algebra的第2页
We could also ask for a combinatorial proof that the sequence (1) is log-concave. In general, if $a_{0}, a_{1}, \ldots, a_{n}$ is any sequence of nonnegative integers for which a combinatorial meaning is known (i.e., we have sets $S_{0}, S_{1}, \ldots, S_{n}$ such that $\# S_{i}=a_{i}$ ), then a construction of an explicit injection $\phi_{k}: S_{k-1} \times S_{k+1} \rightarrow S_{k} \times S_{k}$ yields a combinatorial proof that $a_{k}^{2} \geq a_{k-1} a_{k+1}$. Similarly, a collection of injections $\rho_{k}: S_{k} \rightarrow$ $S_{k+1}(0 \leq k<j)$ and surjections $\rho_{k}: S_{k} \rightarrow S_{k+1}(j \leq k \leq n-1)$ shows combinatorially that the sequence $a_{0}, a_{1}, \ldots, a_{n}$ is unimodal. For the case $a_{k}=\left(\begin{array}{c}n \\ k\end{array}\right)$, we choose $S_{k}$ to be the set $\left(\begin{array}{c}\mathbf{n} \\ k\end{array}\right)$ of $k$-element subsets of $\mathbf{n}=\{1,2, \ldots, n\}$. For any set $X \subseteq \mathbf{n}$ define $X_{j}=$ $X \cap \mathbf{j}$. Given $(A, B) \in S_{k-1} \times S_{k+1}$, let $j$ be the largest integer (easily seen to exist) for which $\# A_{j}=\# B_{j}-1$. Define $C=A_{j} \cup\left(B-B_{j}\right), D=B_{j} \cup\left(A-A_{j}\right)$, and set $\phi_{k}(A, B)=(C, D)$. It is easy to verify that $\phi_{k}$ is an injection, as desired. See [89] for more general results that can be proved by this technique, such as the log-concavity of the Stirling numbers of the first kind (which are further discussed in Example 1).

730

主题

1万

回帖

9万

积分

积分
93613
QQ

显示全部楼层

kuing 发表于 2023-5-8 23:04
啥叫对数凹,定义是什么?

点评

aᵢ² ≥ aᵢ₋₁aᵢ₊₁ 对于 i = 1, ⋯, n  发表于 2023-5-8 23:06

3149

主题

8386

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65391
QQ

显示全部楼层

 楼主| hbghlyj 发表于 2023-5-8 23:10
A well-known generalization of the binomial coefficients $\left(\begin{array}{c}n \\ k\end{array}\right)$ are the q-binomial coefficients $\left[\begin{array}{c}n \\ k\end{array}\right]$, defined for $0 \leq k \leq n$ by
$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=\frac{[n] !}{[k] ![n-k] !},
$$
where
\begin{aligned}
{[j] ! } &=[1][2] \cdots[j] \\
{[i ] } &=1-q^{i} .
\end{aligned}Here $q$ may be regarded as an indeterminate (in which case $\left[\begin{array}{l}n \\ k\end{array}\right]$ is a polynomial in $q$ of degree $k(n-k))$ or as a number. If $q=1$, then $\left[\begin{array}{l}n \\ k\end{array}\right]$ reduces to the binomial coefficient $\left(\begin{array}{l}n \\ k\end{array}\right)$. If $q$ is a prime power, then $\left[\begin{array}{c}n \\ k\end{array}\right]$ is equal to the number of $k$-dimensional subspaces of an $n$-dimensional vector space $V_{n}$ over the finite field $\mathfrak{F}_{q}$ with $q$ elements.

$\left[\begin{array}{l}n \\ 1\end{array}\right],\left[\begin{array}{l}n \\ 0\end{array}\right], \ldots,\left[\begin{array}{l}n \\ n\end{array}\right]$ 是对数凹序列, $q \geq 0$.
证明:$\left[\begin{array}{l}n \\ k\end{array}\right]^2 /\left[\begin{array}{c}n \\ k-1\end{array}\right]\left[\begin{array}{c}n \\ k+1\end{array}\right]=\dfrac{[k+1][n-k+1]}{[k][n-k]}>1$


组合证明 见Stanley (1989)第2页
A combinatorial proof that $\left[\begin{array}{c}n \\ 0\end{array}\right],\left[\begin{array}{l}n \\ 0\end{array}\right], \ldots,\left[\begin{array}{l}n \\ n\end{array}\right]$ is log-concave was given by L. Butler (private communication). The unimodality of the sequence $\left[\begin{array}{l}n \\ 0\end{array}\right],\left[\begin{array}{l}n \\ 1\end{array}\right], \ldots,\left[\begin{array}{l}n \\ n\end{array}\right]$ for $q \geq 0$ should not be confused with the problem of showing that for fixed $k$ and $n$, the coefficients $a_{0}, a_{1}, \ldots, a_{k(n-k)}$ of the polynomial
$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=\sum_{i=0}^{k(n-k)} a_{i} q^{i}
$$
are unimodal. This much more difficult problem is discussed in later sections. (The example $\left[\begin{array}{l}4 \\ 2\end{array}\right]=1+q+2 q^{2}+q^{3}+q^{4}$ shows that the coefficients of $\left[\begin{array}{l}n \\ k\end{array}\right]$ need not be log-concave.)

An extraordinary example of a combinatorial proof of unimodality was given recently by L. Butler [19, chap. 2], [20], and is a generalization of the unimodality of $\left[\begin{array}{l}n \\ 0\end{array}\right],\left[\begin{array}{l}n \\ 1\end{array}\right], \ldots,\left[\begin{array}{l}n \\ n\end{array}\right]$. To state Butler's result, it is convenient to use terminology from the theory of posets (partially ordered sets). A finite poset $P$ is graded of rank $n$ if every maximal chain of $P$ has length $n$ (or cardinality $n+1$ ). In this case, we define the rank $\rho(x)$ of $x \in P$ to be the length $i$ of the longest chain $x_{0}<x_{1}<\cdots<x_{i}=x$ of $P$ with top element $x$. Let $a_{i}$ be the number of elements of $P$ of rank $i$, and call $P$ rank-unimodal if the sequence $a_{0}, a_{1}, \ldots, a_{n}$ is unimodal. Now consider the case where $P$ is the lattice of subgroups of a finite Abelian group $G$. If the prime factorization of $|G|$ is given by $p_{1}^{b_{1}} p_{2}^{b_{2}} \cdots \cdot$, then $P$ is graded of rank $b_{1}+b_{2}+\cdots$ If $H \in P$ and $|H|=p_{1}^{c_{1}} p_{2}^{c_{2}} \cdots \cdot$ then $\rho(H)=c_{1}+c_{2}+\cdots$ in $P$

3149

主题

8386

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65391
QQ

显示全部楼层

 楼主| hbghlyj 发表于 2023-5-8 23:20
kuing 发表于 2023-5-8 16:04
啥叫对数凹,定义是什么?


对数凹 log-concavity
条目作者侯庆虎
最后更新 2022-01-20

单峰型问题中的概念。设\((a_0,a_1,\cdots)\)是一个非负实数序列。如果对任意的\(i>0\)都满足:\(a_i^2\geqslant a_{i-1}a_{i+1}\),则称序列\((a_0,a_1,\cdots)\)是对数凹的。

显然,若\((a_0,a_1,\cdots)\)是由正实数构成的对数凹序列,则它必然是单峰的。组合数学中有很多序列是对数凹的。例如,给定一个正整数\(n\),二项式系数序列\([{n\choose 0},{n\choose 1},\ldots,{n\choose n}]\)就是对数凹的。

证明序列的对数凹性没有统一的理论和方法,可以是组合的,也可以是代数的。例如,2012年허준이(June Huh,韩国,1983~)证明色多项式系数的绝对值是对数凹序列就用到代数几何的理论。

扩展阅读

    BRÄNDÉN P.Unimodality, log-concavity, real-rootedness and beyond.in Handbook of Enumerative Combinatorics, Edited by Miklós Bóna, CRC Bress, Bocu, Raton, Flress,2015,437-484.
    STANLEY R P.Log-concave and unimodal sequences in algebra, combinatorics, and geometry.Ann. New York Acad. Sci.,1989,576:500-535.

手机版|悠闲数学娱乐论坛(第3版)

GMT+8, 2025-3-4 15:44

Powered by Discuz!

× 快速回复 返回顶部 返回列表