Forgot password?
 Create new account
View 159|Reply 5

[数列] 对数凹序列是单峰的

[Copy link]

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2023-5-8 22:21:49 |Read mode
(wiki) A sequence $a = (a_0, a_1, ..., a_n)$ of nonnegative real numbers is called a logarithmically concave sequence, or a log-concave sequence for short, if $a_i^2 ≥ a_{i−1}a_{i+1}$ holds for $0 < i < n$ .
Examples of log-concave sequences are given by the binomial coefficients along any row of Pascal's triangle and the elementary symmetric means of a finite sequence of real numbers.


文章的abstract中说Clearly a log-concave sequence of positive terms is unimodal.
想了一个证明:
$\an$为对数凹序列, 则$\frac{a_i}{a_{i-1}}$单减.
设$a_{j-1}<a_j,a_j>a_{j+1}$,
那么$\frac{a_i}{a_{i-1}}$在$i=j+1$这一项就已经小于1了,
所以当$i>j+1$时$\frac{a_i}{a_{i-1}}<1$,所以$i>j+1$时$a_i$单减.

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

 Author| hbghlyj Posted at 2023-5-8 23:00:08
$\dbinom n0,\dbinom n1,\dots,\dbinom nn$是对数凹序列.
证明: $\dbinom nk^{2} /\dbinom n{k-1}\dbinom n{k+1}=\dfrac{(k+1)(n-k+1)}{k(n-k)}>1$


组合证明Richard P. Stanley (1989). Log-Concave and Unimodal Sequences in Algebra的第2页
We could also ask for a combinatorial proof that the sequence (1) is log-concave. In general, if $a_{0}, a_{1}, \ldots, a_{n}$ is any sequence of nonnegative integers for which a combinatorial meaning is known (i.e., we have sets $S_{0}, S_{1}, \ldots, S_{n}$ such that $\# S_{i}=a_{i}$ ), then a construction of an explicit injection $\phi_{k}: S_{k-1} \times S_{k+1} \rightarrow S_{k} \times S_{k}$ yields a combinatorial proof that $a_{k}^{2} \geq a_{k-1} a_{k+1}$. Similarly, a collection of injections $\rho_{k}: S_{k} \rightarrow$ $S_{k+1}(0 \leq k<j)$ and surjections $\rho_{k}: S_{k} \rightarrow S_{k+1}(j \leq k \leq n-1)$ shows combinatorially that the sequence $a_{0}, a_{1}, \ldots, a_{n}$ is unimodal. For the case $a_{k}=\left(\begin{array}{c}n \\ k\end{array}\right)$, we choose $S_{k}$ to be the set $\left(\begin{array}{c}\mathbf{n} \\ k\end{array}\right)$ of $k$-element subsets of $\mathbf{n}=\{1,2, \ldots, n\}$. For any set $X \subseteq \mathbf{n}$ define $X_{j}=$ $X \cap \mathbf{j}$. Given $(A, B) \in S_{k-1} \times S_{k+1}$, let $j$ be the largest integer (easily seen to exist) for which $\# A_{j}=\# B_{j}-1$. Define $C=A_{j} \cup\left(B-B_{j}\right), D=B_{j} \cup\left(A-A_{j}\right)$, and set $\phi_{k}(A, B)=(C, D)$. It is easy to verify that $\phi_{k}$ is an injection, as desired. See [89] for more general results that can be proved by this technique, such as the log-concavity of the Stirling numbers of the first kind (which are further discussed in Example 1).

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2023-5-8 23:04:21
啥叫对数凹,定义是什么?

Comment

aᵢ² ≥ aᵢ₋₁aᵢ₊₁ 对于 i = 1, ⋯, n  Posted at 2023-5-8 23:06

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

 Author| hbghlyj Posted at 2023-5-8 23:10:04
A well-known generalization of the binomial coefficients $\left(\begin{array}{c}n \\ k\end{array}\right)$ are the q-binomial coefficients $\left[\begin{array}{c}n \\ k\end{array}\right]$, defined for $0 \leq k \leq n$ by
$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=\frac{[n] !}{[k] ![n-k] !},
$$
where
\begin{aligned}
{[j] ! } &=[1][2] \cdots[j] \\
{[i ] } &=1-q^{i} .
\end{aligned}Here $q$ may be regarded as an indeterminate (in which case $\left[\begin{array}{l}n \\ k\end{array}\right]$ is a polynomial in $q$ of degree $k(n-k))$ or as a number. If $q=1$, then $\left[\begin{array}{l}n \\ k\end{array}\right]$ reduces to the binomial coefficient $\left(\begin{array}{l}n \\ k\end{array}\right)$. If $q$ is a prime power, then $\left[\begin{array}{c}n \\ k\end{array}\right]$ is equal to the number of $k$-dimensional subspaces of an $n$-dimensional vector space $V_{n}$ over the finite field $\mathfrak{F}_{q}$ with $q$ elements.

$\left[\begin{array}{l}n \\ 1\end{array}\right],\left[\begin{array}{l}n \\ 0\end{array}\right], \ldots,\left[\begin{array}{l}n \\ n\end{array}\right]$ 是对数凹序列, $q \geq 0$.
证明:$\left[\begin{array}{l}n \\ k\end{array}\right]^2 /\left[\begin{array}{c}n \\ k-1\end{array}\right]\left[\begin{array}{c}n \\ k+1\end{array}\right]=\dfrac{[k+1][n-k+1]}{[k][n-k]}>1$


组合证明 见Stanley (1989)第2页
A combinatorial proof that $\left[\begin{array}{c}n \\ 0\end{array}\right],\left[\begin{array}{l}n \\ 0\end{array}\right], \ldots,\left[\begin{array}{l}n \\ n\end{array}\right]$ is log-concave was given by L. Butler (private communication). The unimodality of the sequence $\left[\begin{array}{l}n \\ 0\end{array}\right],\left[\begin{array}{l}n \\ 1\end{array}\right], \ldots,\left[\begin{array}{l}n \\ n\end{array}\right]$ for $q \geq 0$ should not be confused with the problem of showing that for fixed $k$ and $n$, the coefficients $a_{0}, a_{1}, \ldots, a_{k(n-k)}$ of the polynomial
$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=\sum_{i=0}^{k(n-k)} a_{i} q^{i}
$$
are unimodal. This much more difficult problem is discussed in later sections. (The example $\left[\begin{array}{l}4 \\ 2\end{array}\right]=1+q+2 q^{2}+q^{3}+q^{4}$ shows that the coefficients of $\left[\begin{array}{l}n \\ k\end{array}\right]$ need not be log-concave.)

An extraordinary example of a combinatorial proof of unimodality was given recently by L. Butler [19, chap. 2], [20], and is a generalization of the unimodality of $\left[\begin{array}{l}n \\ 0\end{array}\right],\left[\begin{array}{l}n \\ 1\end{array}\right], \ldots,\left[\begin{array}{l}n \\ n\end{array}\right]$. To state Butler's result, it is convenient to use terminology from the theory of posets (partially ordered sets). A finite poset $P$ is graded of rank $n$ if every maximal chain of $P$ has length $n$ (or cardinality $n+1$ ). In this case, we define the rank $\rho(x)$ of $x \in P$ to be the length $i$ of the longest chain $x_{0}<x_{1}<\cdots<x_{i}=x$ of $P$ with top element $x$. Let $a_{i}$ be the number of elements of $P$ of rank $i$, and call $P$ rank-unimodal if the sequence $a_{0}, a_{1}, \ldots, a_{n}$ is unimodal. Now consider the case where $P$ is the lattice of subgroups of a finite Abelian group $G$. If the prime factorization of $|G|$ is given by $p_{1}^{b_{1}} p_{2}^{b_{2}} \cdots \cdot$, then $P$ is graded of rank $b_{1}+b_{2}+\cdots$ If $H \in P$ and $|H|=p_{1}^{c_{1}} p_{2}^{c_{2}} \cdots \cdot$ then $\rho(H)=c_{1}+c_{2}+\cdots$ in $P$

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

 Author| hbghlyj Posted at 2023-5-8 23:20:50
kuing 发表于 2023-5-8 16:04
啥叫对数凹,定义是什么?
对数凹 log-concavity
条目作者侯庆虎
最后更新 2022-01-20

单峰型问题中的概念。设\((a_0,a_1,\cdots)\)是一个非负实数序列。如果对任意的\(i>0\)都满足:\(a_i^2\geqslant a_{i-1}a_{i+1}\),则称序列\((a_0,a_1,\cdots)\)是对数凹的。

显然,若\((a_0,a_1,\cdots)\)是由正实数构成的对数凹序列,则它必然是单峰的。组合数学中有很多序列是对数凹的。例如,给定一个正整数\(n\),二项式系数序列\([{n\choose 0},{n\choose 1},\ldots,{n\choose n}]\)就是对数凹的。

证明序列的对数凹性没有统一的理论和方法,可以是组合的,也可以是代数的。例如,2012年허준이(June Huh,韩国,1983~)证明色多项式系数的绝对值是对数凹序列就用到代数几何的理论。

扩展阅读

    BRÄNDÉN P.Unimodality, log-concavity, real-rootedness and beyond.in Handbook of Enumerative Combinatorics, Edited by Miklós Bóna, CRC Bress, Bocu, Raton, Flress,2015,437-484.
    STANLEY R P.Log-concave and unimodal sequences in algebra, combinatorics, and geometry.Ann. New York Acad. Sci.,1989,576:500-535.

手机版Mobile version|Leisure Math Forum

2025-4-21 14:12 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list