Forgot password?
 Create new account
View 131|Reply 1

[数列] 解$y(qx) - ay(x) = f(x)$

[Copy link]

3148

Threads

8498

Posts

610K

Credits

Credits
66193
QQ

Show all posts

hbghlyj Posted at 2024-9-10 19:47:42 |Read mode
如何解决 qbook 书中第13页中的这个练习?
Screenshot 2024-09-10 194638.png
写出这个递推方程的形式解 $y(x)$?$a,q$ 是常数.

3148

Threads

8498

Posts

610K

Credits

Credits
66193
QQ

Show all posts

 Author| hbghlyj Posted at 2024-9-10 20:18:34

尝试

令 $y(x)=x^{\log_qa}z(x)$.
$$z(qx)-z(x)=\frac{f(x)}{ax^{\log_qa}}$$
除以 $qx-x,$
$$\frac{z(qx)-z(x)}{qx-x}=\frac{f(x)}{ax^{\log_qa}(qx-x)}$$
使用公式 (1.30),
$$D_qz(x)=\frac{f(x)}{ax^{\log_qa}(qx-x)}$$
代入 (1.44) 就完成了?

尚不确定

手机版Mobile version|Leisure Math Forum

2025-4-21 01:40 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list