Forgot password?
 Create new account
View 127|Reply 1

[数列] 求数列的通项公式

[Copy link]

48

Threads

47

Posts

685

Credits

Credits
685

Show all posts

snowblink Posted at 2024-8-9 09:08:01 |Read mode
数列${a_n}\left ( n \in \mathbb{N} \right ) $中,$a_0=a_1=11$,且$a_{i+j}=\dfrac{1}{2}\left ( a_{2i} + a_{2j}  \right )  - \left ( i-j \right )^2$,求${a_n}$的通项

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2024-8-9 11:25:41

\[a_i=\frac{a_{2i}+a_0}{2}-i^2\]
\[a_{2i}=2(a_i+i^2)-a_0\]
\[a_2=2(a_1+1^2)-a_0=13\]
\[\]
\[a_{i+1}=\frac{a_{2i}+a_2}{2}-(i-1)^2=\frac{a_{2i}+13}{2}-(i-1)^2=\frac{2(a_i+i^2)-11+13}{2}-(i-1)^2\]
\[a_{i+1}=a_i+2i\]
\[a_i=i^2-i+11\]

手机版Mobile version|Leisure Math Forum

2025-4-21 01:46 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list