Forgot password?
 Create new account
View 170|Reply 2

[数列] $4a_{n+1}-a_na_{n+1}+2a_n=9$,若 $a_1=1$ , 则 $a_n=$ ?

[Copy link]

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2023-1-24 20:11:53 |Read mode
Last edited by isee at 2023-1-25 20:17:00源自知乎提问

:数列 $\{a_n\}$ 满足 $4a_{n+1}-a_na_{n+1}+2a_n=9$,若 $a_1=1$ , 则 $a_n=$ ?





给一个不常用的方式:先转化为二阶递推式(再转化为一阶递推式).

递推式即为 $a_{n+1}=\dfrac{2a_n-9}{a_n-4}$ ,可令 $a_{n+1}=\dfrac{b_{n+2}}{b_{n+1}}+4$ ,于是

\begin{gather*}
4a_{n+1}-a_na_{n+1}+2a_n=9,\\[1ex]
4\bigg(\frac{b_{n+2}}{b_{n+1}}+4\bigg)-\bigg(\frac{b_{n+1}}{b_{n}}+4\bigg)\bigg(\frac{b_{n+2}}{b_{n+1}}+4\bigg)+2\bigg(\frac{b_{n+1}}{b_{n}}+4\bigg)=9,\\[1ex]
-\frac{b_{n+2}}{b_n}-2\frac{b_{n+1}}{b_n}=1,\\[1ex]
\color{blue}{b_{n+2}=-2b_{n+1}-b_n},\tag{01}\\[1ex]
b_{n+2}+b_{n+1}=-\big(b_{n+1}+b_n\big),\\[1ex]
c_{n+1}+1=-\bigg(1+\frac1{c_n}\bigg)=-\frac{c_n+1}{c_n},\,\color{blue}{\frac{b_{n+2}}{b_{n+1}}=c_{n+1}},\\[1ex]
\frac1{c_{n+1}+1}=-\frac{c_n}{c_n+1}=\frac1{c_n+1}-1,
\end{gather*}

而 $c_{n+1}=a_{n+1}-4$ ,从而 $\left\{\dfrac1{a_n-3}\right\}$ 为等差数列,进一步知 \[a_n=3-\frac2{2n-1}.\]

即观察简单的二阶递推式得到等比数列(或者等差数列),对 $a_{n+1}=\dfrac{ua_n+v}{pa_n+q}$ 当 $v\ne0$ 可将分母看作整体,即令 \[a_{n+1}=\frac{b_{n+2}}{b_{n+1}}-\frac qp,\] 从而转化为二阶递推式.

这具体指什么呢,我们写成分式形递推式,再现(看似复杂的)开始,就更直观了:

\begin{gather*}
a_{n+1}=\frac{2(a_n-4)-1}{a_n-4}=-\frac1{a_n-4}+2,
\end{gather*} 将右边分母,作一个置换 \[\color{red}{1\cdot a_n-4=1\cdot\frac{b_{n+1}}{b_n}},\] 则\begin{align*}
\frac{b_{n+2}}{b_{n+1}}+4&=-\frac{b_n}{b_{n+1}}+2,
\end{align*} 去分母整理即为 $(01)$ 式.
isee=freeMaths@知乎

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2023-1-24 22:59:12
for tag:
我记得上次是写“递推数列”这次又“数列递推”
话说这也算竞赛题咩?

Comment

哈哈哈  Posted at 2023-1-25 20:17

手机版Mobile version|Leisure Math Forum

2025-4-21 14:12 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list