|
青青子衿
Posted at 2019-5-29 21:28:31
Last edited by 青青子衿 at 2019-5-29 21:44:00回复 2# Infinity
...- DSolve[y'[x] + (2 (x^2 - x + 1))/(x (x - 1)) y[x] + 2 == 0, y[x], x]
Copy the Code ...
补充一个一阶线性常微分方程的求解:
\[y'+\frac{2(x^2-x+1)}{x(x-1)}y+2=0\]
\begin{align*}
y'&=-\frac{2(x^2-x+1)}{x(x-1)}y-2\\
\\
y'&=\qquad\qquad\quad\,P(x)y+Q(x)\\
\\
y&=e^{\scriptsize\displaystyle\int P(x)\mathrm{d}x}\left[\displaystyle\int Q(x)\normalsize{e}^{\scriptsize\displaystyle{-}\int P(x)\text dx}\text dx+C\right]\\
\\
y&=\frac{x^2e^{-2x}}{\left(x-1\right)^2}\left[-2\displaystyle\int\frac{\left(x-1\right)^2e^{2x}}{x^2}\mathrm{ d}x+C\right]\\
\\
y&=\frac{x^2e^{-2x}}{\left(x-1\right)^2}\left[-2\cdot\left(\frac{1}{2}-\frac{1}{x}\right)e^{2x}+C\right]\\
y&=\frac{x^2e^{-2x}}{\left(x-1\right)^2}\left[\left(\frac{2}{x}-1\right)e^{2x}+C\right]\\
y&=-\frac{x(x-2)}{\left(x-1\right)^2}+\frac{Cx^2e^{-2x}}{\left(x-1\right)^2}\\
y&=\frac{1}{\left(x-1\right)^2}+\frac{Cx^2e^{-2x}}{\left(x-1\right)^2}-1\\
\end{align*}
\[ y'=-\frac{2}{\left(x-1\right)^3}-\frac{2Cx\left(x^2-x+1\right)e^{-2x}}{\left(x-1\right)^3} \] |
|