Forgot password?
 Create new account
View 131|Reply 2

[数列] 一道对数相关数列递推问题

[Copy link]

48

Threads

47

Posts

685

Credits

Credits
685

Show all posts

snowblink Posted at 2024-6-16 23:33:02 |Read mode
已知数列$\left \{ x_n \right \} $满足$\ln{ x_{n+1}} = 1+\ln{ x_{n}}+n\ln{\left (  1-\frac{1}{n+1}   \right ) }$,$x_0=1$,
(1)若$\frac{x_{n+1}}{x_{n}} > k$恒成立,求正实数$k$的最大值;
(2)证明:存在$m\in \mathbb{N^*} $, 使$x_{n}>\frac{5}{2} \sqrt{m} +1$

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2024-6-17 00:57:01
\[\ln(\frac{x_{n+1}}{x_n})=1+n\ln(1-\frac{1}{n+1})\]
右边随便你啥方法很容易证明递减,于是$k=1-\ln(2)$。


(2)、
易得$x_1=1$,接下来
\[\ln(\frac{x_{n+1}}{x_n})=1+n\ln(1-\frac{1}{n+1})=\ln\left(\frac{n^n}{(n+1)^n}e\right)\]
\[\frac{x_{n+1}}{x_n}=\frac{n^n}{(n+1)^n}e\]
\[x_n=\frac{x_{n}}{x_{n-1}}\cdot\frac{x_{n-1}}{x_{n-2}}\cdot ...\cdot\frac{x_2}{x_1}\cdot x_1\]
\[=\frac{(n-1)^{n-1}}{n^{n-1}}e\cdot\frac{(n-2)^{n-2}}{(n-1)^{n-2}}e\cdot...\cdot\frac{1^1}{2^1}e\cdot 1\]
\[=\frac{(n-1)!e^{n-1}}{n^{n-1}}=\frac{n!}{e}(\frac{e}{n})^n\]

如果你熟悉斯特灵公式,那就知道会有
\[n!=\sqrt{2\pi n}(\frac{n}{e})^ne^{\lambda_n}\]
其中
\[\frac{1}{12n+1}<\lambda_n<\frac{1}{12n}\]
也就是
\[n!>\sqrt{2\pi n}(\frac{n}{e})^n\]
\[x_n=\frac{n!}{e}(\frac{e}{n})^n>\frac{\sqrt{2\pi n}}{e}\]
这个结论完爆原题那个了,剩下略

Comment

😀  Posted at 2024-6-17 11:43

手机版Mobile version|Leisure Math Forum

2025-4-21 01:18 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list