Forgot password?
 Register account
View 309|Reply 4

[不等式] 求证 $(1+2n)^n\geqslant 1^n+2^n+4^n+\cdots+(2n)^n$

[Copy link]

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2023-4-21 11:36 |Read mode
Last edited by isee 2023-4-21 17:28网友发的一道题,我卡住了:(所以也想不到合适的标签,先空着吧)

若 $n$ 为正整数,求证:$(1+2n)^n\geqslant 1^n+2^n+4^n+6^n+8^n+\cdots+(2n)^n$.
isee=freeMaths@知乎

682

Threads

110K

Posts

910K

Credits

Credits
90973
QQ

Show all posts

kuing Posted 2023-4-21 15:15
直接验证知 `n=1`, `2` 时不等式成立,当 `n\geqslant3` 时,不等式等价于
\[\left(\frac1{2n}+1\right)^n-\left(\frac1{2n}\right)^n\geqslant\left(\frac1n\right)^n+\left(\frac2n\right)^n+\cdots+\left(\frac{n-1}n\right)^n+1,\]
显然左边关于 `n` 递增,故
\[\LHS\geqslant\left(\frac16+1\right)^3-\left(\frac16\right)^3=\frac{19}{12},\]
而曾经一道老题(链接懒得找)证明过
\[\RHS<\frac e{e-1},\]
所以只需证明 `e>19/7=2.714\ldots`,显然成立,即得证。

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

 Author| isee Posted 2023-4-21 17:15
kuing 发表于 2023-4-21 15:15
直接验证知 `n=1`, `2` 时不等式成立,当 `n\geqslant3` 时,不等式等价于
\[\left(\frac1{2n}+1\right)^n- ...


两个数列不等式求证
forum.php?mod=viewthread&tid=2890
(出处: 悠闲数学娱乐论坛(第3版))

(0,1]等距离取n个点的n次方和的极限
forum.php?mod=viewthread&tid=8630
(出处: 悠闲数学娱乐论坛(第3版))




知乎也有个类似的 zhihu.com/question/593249115

Comment

论坛的两个内链都无效啊,居然有省略号😂  Posted 2023-4-21 20:58
isee=freeMaths@知乎

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

 Author| isee Posted 2023-4-21 17:30
kuing 发表于 2023-4-21 15:15
直接验证知 `n=1`, `2` 时不等式成立,当 `n\geqslant3` 时,不等式等价于
\[\left(\frac1{2n}+1\right)^n- ...
还得是你呀,多谢了,总觉得绕不开极限,就没深思,其次,将(1/2n)^n 放右边确实是好手~
isee=freeMaths@知乎

Mobile version|Discuz Math Forum

2025-6-5 08:00 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit