Forgot password?
 Register account
View 271|Reply 1

求数列极限 $\displaystyle\lim_{n\to\infty}n p^n,\ 0<p<1$ .

[Copy link]

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2024-10-2 09:53 |Read mode
源自知乎提问

:求数列极限 $\displaystyle\lim_{n\to\infty}n p^n,\ 0<p<1$ .





应用斯托尔茨 ( O.Stolz ) 定理:

设数列 $\{y_n\}$ 单调递增且 $\lim_{n\to \infty} y_n=+\infty,$ 若 $\lim_{n\to \infty}\frac {x_n-x_{n-1}}{y_n-y_{n-1}}$ 存在(有限或 $\pm \infty$ ),则 $\lim_{n\to \infty}\frac {x_n}{y_n}=\lim_{n\to \infty}\frac {x_n-x_{n-1}}{y_n-y_{n-1}}.$

由 $\frac1p>1$ ,则 $\{\big(\frac1{p}\big)^n\}$ 是单调递增的,由斯托尔茨 ( O.Stolz ) 定理就有
\begin{align*}
\lim_{n\to\infty}np^n&=\lim_{n\to\infty}\frac{n}{\big(\frac1p\big)^n}\\[1ex]
&=\lim_{n\to\infty}\frac{n-(n-1)}{\big(\frac1p\big)^n-\big(\frac1{p}\big)^{n-1}}\\[1ex]
&=\lim_{n\to\infty}\frac{1}{\frac1{p^n}-\frac1{p^{n-1}}}\\[1ex]
&=\lim_{n\to\infty}\frac{p^n}{1-p}\\[1ex]
&=0.
\end{align*}




另解:如果从没有见过 Stolz 定理,可考虑用夹逼法则,由 $0<p<1$ ,令 $p=\frac1{1+m},\,m>0$ 且为常数,则有二项式定理,当 n 充分大时 \begin{equation*}
p^n=\frac1{(1+m)^n}=\frac1{1+nm+\frac{n(n-1)}2m^2+\cdots}<\frac{1}{\frac{n(n-1)}2m^2}
\end{equation*} 所以 \begin{equation*}
0<np^n=\frac n{(1+m)^n}<\frac{n}{\frac{n(n-1)}2m^2}\to 0\,(n\to\infty)
\end{equation*} 于是知 \begin{equation*}
\lim_{n\to\infty}np^n=0.
\end{equation*}
isee=freeMaths@知乎

411

Threads

1619

Posts

110K

Credits

Credits
11813

Show all posts

abababa Posted 2024-10-2 11:25
这个令$q=\frac{1}{p}$,就有$q>1$,所以
\[\lim_{n\to\infty}np^n=\lim_{n\to\infty}\frac{n}{q^n}\xlongequal{洛必达}\lim_{n\to\infty}\frac{1}{q^n\ln q}=0\]

Mobile version|Discuz Math Forum

2025-6-4 17:48 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit