Forgot password?
 Create new account
View 120|Reply 1

求 $\int_0^2\frac{x}{(x^2-2x+2)^2}\,\mathrm dx$

[Copy link]

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2024-12-29 13:22:49 |Read mode
自知乎提问



求 $\displaystyle\int_0^2\frac{x}{(x^2-2x+2)^2}\,\mathrm dx$ .




此处定积分可直接三角换元. \begin{align*}
\int_0^2\frac{x}{(x^2-2x+2)^2}\,\mathrm dx&=\int_0^2\frac{x}{\big(1+(x-1)^2\big)^2}\,\mathrm dx,
\end{align*} 令 $x-1=\tan u$ ,则 \begin{align*}
\int_0^2\frac{x}{(x^2-2x+2)^2}\,\mathrm dx&=\int_{-\frac\pi4}^{\frac\pi4}\frac{1+\tan u}{\big(1+\tan^2 u\big)^2}\sec^2 u\,\mathrm du\\[1em]
&=\int_{-\frac\pi4}^{\frac\pi4}\frac{1+\tan u}{\sec^2 u}\,\mathrm du\\[1em]
&=\int_{-\frac\pi4}^{\frac\pi4}\left(\frac12\sin 2u+\cos^2u\right)\,\mathrm du\\[1em]
{\color{blue}{(\text{奇函数}\,+\,\text{偶函数})}}\quad&=0+2\int_{0}^{\frac\pi4}\cos^2u\,\mathrm du\\[1em]
&=\int_{0}^{\frac\pi4}(1+\cos 2u)\,\mathrm du\\[1em]
&=\frac{\pi}4+\frac12.
\end{align*}
isee=freeMaths@知乎

418

Threads

1628

Posts

110K

Credits

Credits
11891

Show all posts

abababa Posted at 2024-12-29 19:42:34
其实首先变成对称区间就好办了,令$t=x-1$,
\[原式=\int_{-1}^{1}(\frac{t}{(t^2+1)^2}+\frac{1}{(t^2+1)^2})dt\]
而$\int_{-1}^{1}\frac{t}{(t^2+1)^2}dt$是奇函数在对称区间上的积分,就是零,所以
\[原式=\int_{-1}^{1}\frac{1}{(t^2+1)^2}dt=[\frac{1}{2}(\frac{t}{t^2+1}+\arctan t)]_{-1}^{1}\]

手机版Mobile version|Leisure Math Forum

2025-4-20 22:07 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list