Forgot password?
 Register account
View 214|Reply 0

两定积分的大小比较

[Copy link]

768

Threads

4685

Posts

310K

Credits

Credits
35004

Show all posts

isee Posted 2022-12-13 13:29 |Read mode
源自知乎提问



:求证: $\int_0^\frac\pi2\frac{\cos x}{1+x^2}\,\mathrm dx\geqslant \int_0^\frac\pi2\frac{\sin x}{1+x^2}\,\mathrm dx$.





大家的方法让我眼花缭乱(凑一个热闹)朴素的方式(其实已经有答主写了差不多的),利用

\[\color{blue}{\int_a^bf(x)\,\mathrm dx}=\int_{b-a}^0f(b-t)\,\mathrm d(b-t)=\color{blue}{\int_0^{b-a}f(b-x)\,\mathrm dx}.\] 则

\begin{gather*}
\int_0^\frac\pi2\frac{\cos x}{1+x^2}\,\mathrm dx\geqslant \int_0^\frac\pi2\frac{\sin x}{1+x^2}\,\mathrm dx\\[1em]
\iff \int_0^\frac\pi2\frac{\cos x-\sin x}{1+x^2}\,\mathrm dx\geqslant 0\\[1em]
\iff \int_0^\frac\pi4\frac{\cos x-\sin x}{1+x^2}\,\mathrm dx+ \color{blue}{\int_\frac\pi4^\frac\pi2\frac{\cos x-\sin x}{1+x^2}\,\mathrm dx}\geqslant 0\\[1em]
\iff \int_0^\frac\pi4\frac{\cos x-\sin x}{1+x^2}\,\mathrm dx+ \color{blue}{\int_0^\frac\pi4\frac{\sin x-\cos x}{1+(\frac\pi2-x)^2}\,\mathrm dx}\geqslant 0\\[1em]
\iff \int_0^\frac\pi4(\cos x-\sin x)\Big(\frac1{1+x^2}-\frac1{1+(x-\frac\pi2)^2}\Big)\,\mathrm dx\tag{01}
\end{gather*} 函数 \[y=(\cos x-\sin x)\Big(\frac1{1+x^2}-\frac1{1+(x-\frac\pi2)^2}\Big),x\in\big(0,\frac\pi4\big)\] 是两个正的单调递减函数的乘积,则依然是单调递减的,于是 \[y_{\min}\geqslant y\big(\frac\pi4\big)=0,\] 这说明 $(01)$ 是成立的,得证.


isee=freeMaths@知乎

Mobile version|Discuz Math Forum

2025-6-6 13:42 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit