Forgot password?
 Create new account
View 143|Reply 2

证 $\frac 1{2\sqrt n}\leqslant \frac{(2n-1)!!}{(2n)!!}<\frac 1{\sqrt {2n}}$

[Copy link]

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2022-9-25 00:38:49 |Read mode
源自知乎提问






: $\dfrac 1{2\sqrt n}\leqslant \dfrac{(2n-1)!!}{(2n)!!}<\dfrac 1{\sqrt {2n}},$ $n\in \mathbb N_+.$





先证左端.

当 $n=1$ 时左边显然成立.

当 $\color{blue}{n\geqslant 2}$ 时 $(2n-1)^2=4n^2-4n+1>4n^2-4n=2n(2n-2)>0$ 从而得到 \[\frac {2n-1}{2n}>\frac {2n-2}{2n-1}.\]故 \[\frac 12\cdot \left(\frac 34\cdot \frac 56\cdots \frac{2n-1}{2n}\right)> \frac 12\cdot \left(\frac 23\cdot \frac 45\cdots \frac{2n-2}{2n-1}\right),\]两端乘以 $\color{blue}{\frac 34\cdot \frac 56\cdots \frac{2n-1}{2n}}$ 有 \[2\left(\frac 12\cdot \frac 34\cdot \frac 56\cdots \frac{2n-1}{2n}\right)^2> \frac{(2n-1)!}{(2n)!}=\frac 1{2n},\]两端开方,综上即有 $\dfrac 1{2\sqrt n}\leqslant \dfrac{(2n-1)!!}{(2n)!!}.$





再证右端.

同样的可证 \[\frac {2n-1}{2n}<\frac {2n}{2n+1}.\] 故 \[\frac 12\cdot\frac 34\cdot \frac 56\cdots \frac{2n-1}{2n}<\frac 23\cdot \frac 45\cdot \frac 67\cdots \frac{2n}{2n+1},\] 两端同乘 $\frac 12\cdot\frac 34\cdot \frac 56\cdots \frac{2n-1}{2n}$ 有 \[\left(\frac 12\cdot\frac 34\cdot \frac 56\cdots \frac{2n-1}{2n}\right)^2<\frac{(2n)!}{(2n+1)!}=\frac 1{2n+1}<\frac 1{2n},\] 即 $\dfrac{(2n-1)!!}{(2n)!!}<\dfrac 1{\sqrt {2n}}.$
isee=freeMaths@知乎

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2022-9-25 20:11:48
\[\lim_{n\to\infty}\sqrt n\frac{(2n-1)!!}{(2n)!!}=\frac{1}{\sqrt{\pi }}\]

17

Threads

126

Posts

1822

Credits

Credits
1822

Show all posts

uk702 Posted at 2022-9-25 22:08:16
我记得有:

\( \frac{1}{\sqrt{\pi (n+\frac{1}{3})}} < \frac 12\cdot\frac 34\cdot \frac 56\cdots \frac{2n-1}{2n} < \frac{1}{\sqrt{\pi (n+\frac{1}{4})}} \)

手机版Mobile version|Leisure Math Forum

2025-4-21 14:16 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list