Forgot password?
 Create new account
View 158|Reply 4

帮忙看下这道极限题怎么做

[Copy link]

1

Threads

3

Posts

20

Credits

Credits
20

Show all posts

Mason·visible Posted at 2023-11-10 22:40:37 |Read mode
$ \lim_{n\rightarrow\infty}\sqrt[n^{2}+n]{c_{n}^{0}c_{n}^{1}\ldots c_{n}^{n}} $

701

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2023-11-10 22:59:35
这个 c 是啥?是想说组合数吗?那应该是大写 C 喔

1

Threads

3

Posts

20

Credits

Credits
20

Show all posts

 Author| Mason·visible Posted at 2023-11-10 23:03:08
kuing 发表于 2023-11-10 22:59
这个 c 是啥?是想说组合数吗?那应该是大写 C 喔
对,是组合数

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2023-11-12 14:28:59
注意到对 $n\geq 1$, 有递推式
$$
\prod_{0\leq k\leq n}\binom{n}{k}=\prod_{1\leq k\leq n}\frac{n}{k}\cdot \binom{n-1}{k-1}=\frac{n^n}{n!}\cdot \prod_{0\leq k\leq n-1}\binom{n-1}{k}.
$$
对原式取对数, 得
$$
\lim_{n\to\infty}\frac{\ln \frac{n^n}{n!}+\cdots +\ln\frac{1^1}{1!}+C}{n^2+n}\quad (C\text{ 为常数}).
$$
用一次 Stolz, 故只需求极限
$$
\lim_{n\to\infty}\frac{\ln \frac{n^n}{n!}}{2n}.
$$
再用一次 Stolz, 故只需求极限
$$
\lim_{n\to\infty}\frac{\ln \frac{(n+1)^{n+1}}{(n+1)!}-\ln\frac{n^n}{n!}}{2}=\lim_{n\to\infty}\frac{\ln(1+1/n)^n}{2}=\frac{1}{2}.
$$
从而原式极限是 $e^{1/2}$.

1

Threads

3

Posts

20

Credits

Credits
20

Show all posts

 Author| Mason·visible Posted at 2023-11-12 19:03:29
Czhang271828 发表于 2023-11-12 14:28
注意到对 $n\geq 1$, 有递推式
$$
\prod_{0\leq k\leq n}\binom{n}{k}=\prod_{1\leq k\leq n}\frac{n}{k}\c ...
谢谢你🙏

手机版Mobile version|Leisure Math Forum

2025-4-20 22:31 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list