Forgot password
 Register account
View 288|Reply 4

帮忙看下这道极限题怎么做

[Copy link]

1

Threads

3

Posts

0

Reputation

Show all posts

Mason·visible posted 2023-11-10 22:40 |Read mode
$ \lim_{n\rightarrow\infty}\sqrt[n^{2}+n]{c_{n}^{0}c_{n}^{1}\ldots c_{n}^{n}} $

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2023-11-10 22:59
这个 c 是啥?是想说组合数吗?那应该是大写 C 喔

1

Threads

3

Posts

0

Reputation

Show all posts

original poster Mason·visible posted 2023-11-10 23:03
kuing 发表于 2023-11-10 22:59
这个 c 是啥?是想说组合数吗?那应该是大写 C 喔
对,是组合数

48

Threads

771

Posts

93

Reputation

Show all posts

Czhang271828 posted 2023-11-12 14:28
注意到对 $n\geq 1$, 有递推式
$$
\prod_{0\leq k\leq n}\binom{n}{k}=\prod_{1\leq k\leq n}\frac{n}{k}\cdot \binom{n-1}{k-1}=\frac{n^n}{n!}\cdot \prod_{0\leq k\leq n-1}\binom{n-1}{k}.
$$
对原式取对数, 得
$$
\lim_{n\to\infty}\frac{\ln \frac{n^n}{n!}+\cdots +\ln\frac{1^1}{1!}+C}{n^2+n}\quad (C\text{ 为常数}).
$$
用一次 Stolz, 故只需求极限
$$
\lim_{n\to\infty}\frac{\ln \frac{n^n}{n!}}{2n}.
$$
再用一次 Stolz, 故只需求极限
$$
\lim_{n\to\infty}\frac{\ln \frac{(n+1)^{n+1}}{(n+1)!}-\ln\frac{n^n}{n!}}{2}=\lim_{n\to\infty}\frac{\ln(1+1/n)^n}{2}=\frac{1}{2}.
$$
从而原式极限是 $e^{1/2}$.

1

Threads

3

Posts

0

Reputation

Show all posts

original poster Mason·visible posted 2023-11-12 19:03
Czhang271828 发表于 2023-11-12 14:28
注意到对 $n\geq 1$, 有递推式
$$
\prod_{0\leq k\leq n}\binom{n}{k}=\prod_{1\leq k\leq n}\frac{n}{k}\c ...
谢谢你🙏

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-20 06:09 GMT+8

Powered by Discuz!

Processed in 0.029776 seconds, 32 queries