Forgot password?
 Register account
View 264|Reply 1

数列极限

[Copy link]

48

Threads

15

Posts

685

Credits

Credits
685

Show all posts

snowblink Posted 2024-8-19 21:22 |Read mode
数列$\an$满足$a_{n+1}=a_n+\mathrm{e}^{-a_n}$,$a_1=1$,计算$\lim_{n \to \infty} \dfrac{n(a_n-\ln n)}{\ln n}$.
有点精细,用Taylor估阶后只能搞出$\ln n$和$a_n$是等价无穷小,接下来该怎么处理呢

48

Threads

771

Posts

110K

Credits

Credits
13880
QQ

Show all posts

Czhang271828 Posted 2024-8-20 13:53
数列单调递增, 其极限满足 $L=L+e^{-L}$, 因此 $L=+\infty$. 再使用 Stolz 公式, 得
$$
\lim_{n\to\infty} (a_n-\ln n)=\ln \lim_{n\to\infty} \frac{e^{a_n}}{n}=\ln \lim_{n\to\infty} (e^{a_{n+1}}-e^{a_n})=\ln \lim_{n\to\infty}\frac{e^{e^{-a_n}}-1}{e^{-a_n}}=0.
$$
按照正常思维, 我们需要将 $\frac{g(n)}{f(n)}\sim 1$ 细化作 $\frac{g(n)-f(n)}{h(n)}\sim1$. 依照结论构造 (用一次 Stolz)
$$
\lim_{n\to\infty}\frac{e^{a_n}-n}{\ln n}=\lim_{n\to\infty}\frac{e^{a_{n+1}}-e^{a_n}-1}{a_{n+1}-a_n}\cdot \underset{\text{等于 }1}{\underbrace{\frac{a_{n+1}-a_n}{\ln (n+1)-\ln (n)}}}
$$
$$
=\lim_{n\to\infty}\frac{e^{a_{n+1}}-e^{a_n}-1}{e^{-a_n}}=\lim_{n\to\infty}\frac{e^{e^{-a_n}}-1-e^{-a_n}}{(e^{-a_n})^2}=\frac{1}{2}.
$$
渐进地, $\frac{e^{a_n}-n}{\ln n}=\frac{1}{2}+O(\frac{1}{n})$, 即,
$$
n\cdot \frac{(a_n-\ln n)}{\ln n}
=n\cdot \frac{\ln \left[n+\frac{\ln n}{2}+O(\frac{\ln n}{n})\right]-\ln n}{\ln n}=\frac{1}{2}+O(\frac{\ln n}{n}).
$$

Mobile version|Discuz Math Forum

2025-6-5 01:33 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit