Forgot password?
 Create new account
View 120|Reply 1

数列极限

[Copy link]

48

Threads

47

Posts

685

Credits

Credits
685

Show all posts

snowblink Posted at 2024-8-19 21:22:20 |Read mode
数列$\left \{ a _ n \right \} $满足$\ a _ {n+1}   = \ a _ {n} + \mathrm{e} ^ {-a _ {n}}$,$\ a _ {1}=1$,计算$\lim_{n \to \infty  } \dfrac{n\left (\ a _ {n} - \ln n \right ) }{\ln n} $.
有点精细,用taylor估阶后只能搞出ln n和an是等价无穷小,接下来该怎么处理呢

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2024-8-20 13:53:06
数列单调递增, 其极限满足 $L=L+e^{-L}$, 因此 $L=+\infty$. 再使用 Stolz 公式, 得
$$
\lim_{n\to\infty} (a_n-\ln n)=\ln \lim_{n\to\infty} \frac{e^{a_n}}{n}=\ln \lim_{n\to\infty} (e^{a_{n+1}}-e^{a_n})=\ln \lim_{n\to\infty}\frac{e^{e^{-a_n}}-1}{e^{-a_n}}=0.
$$
按照正常思维, 我们需要将 $\frac{g(n)}{f(n)}\sim 1$ 细化作 $\frac{g(n)-f(n)}{h(n)}\sim1$. 依照结论构造 (用一次 Stolz)
$$
\lim_{n\to\infty}\frac{e^{a_n}-n}{\ln n}=\lim_{n\to\infty}\frac{e^{a_{n+1}}-e^{a_n}-1}{a_{n+1}-a_n}\cdot \underset{\text{等于 }1}{\underbrace{\frac{a_{n+1}-a_n}{\ln (n+1)-\ln (n)}}}
$$
$$
=\lim_{n\to\infty}\frac{e^{a_{n+1}}-e^{a_n}-1}{e^{-a_n}}=\lim_{n\to\infty}\frac{e^{e^{-a_n}}-1-e^{-a_n}}{(e^{-a_n})^2}=\frac{1}{2}.
$$
渐进地, $\frac{e^{a_n}-n}{\ln n}=\frac{1}{2}+O(\frac{1}{n})$, 即,
$$
n\cdot \frac{(a_n-\ln n)}{\ln n}
=n\cdot \frac{\ln \left[n+\frac{\ln n}{2}+O(\frac{\ln n}{n})\right]-\ln n}{\ln n}=\frac{1}{2}+O(\frac{\ln n}{n}).
$$

手机版Mobile version|Leisure Math Forum

2025-4-20 22:18 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list