Forgot password
 Register account
View 1082|Reply 2

求极限

[Copy link]

81

Threads

165

Posts

1

Reputation

Show all posts

APPSYZY posted 2020-6-2 14:30 |Read mode
Last edited by hbghlyj 2025-4-24 01:47设 $f(x)$ 在点 $x=1$ 附近有定义,$f(1)=0, f'(1)=2$ ,求 $\lim_{x \rightarrow 0} \frac{f(\sin ^2 x+\cos x) \tan 4 x}{(e^{x^2}-1) \sin x}$

81

Threads

165

Posts

1

Reputation

Show all posts

original poster APPSYZY posted 2020-6-2 14:34
错误的原因是,题目并没有告诉f'(x)在x=1处连续,所以不能乱用洛必达法则,具体怎么解还请高人指点。

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2020-6-2 14:45
\begin{align*}
\text{原式}&=\lim_{x\to0}\frac{f(\sin^2x+\cos x)-f(1)}{\sin^2x+\cos x-1}\cdot\frac{(\sin^2x+\cos x-1)\tan4x}{(e^{x^2}-1)\sin x}\\
&=f'(1)\cdot\lim_{x\to0}\frac{\cos x\tan(x/2)\tan4x}{e^{x^2}-1}\\
&=f'(1)\cdot\lim_{x\to0}\frac{2x^2}{e^{x^2}-1}\\
&=2f'(1).
\end{align*}

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-20 06:09 GMT+8

Powered by Discuz!

Processed in 0.016666 seconds, 38 queries