Forgot password?
 Create new account
View 1346|Reply 4

[数列] 递推数列极限

[Copy link]

47

Threads

83

Posts

776

Credits

Credits
776

Show all posts

Shiki Posted at 2019-12-27 13:28:34 |Read mode
Last edited by hbghlyj at 2025-3-22 23:52:20$a_1=1,a_2=\frac {5}{4},a_{n}=\frac{(2n+3)a_{n-1}+(2n-3)a_{n-2}}{2n}$

求n趋于正无穷时$a_n$的极限

1

Threads

153

Posts

1088

Credits

Credits
1088

Show all posts

Infinity Posted at 2019-12-30 17:48:44
确认公式没打错吗?数列发散,不存在极限。不过应该可以找到母函数,但是MMA只会用超几何级数(这个级数几乎可以表示很多初等和超越函数,比如雅可比椭圆函数,Gamma函数等等)来表示解,很明显结果是有理数,这说明系数是一些超几何级数的代数和,最后收敛到某个有理数,因此母函数应该可以进一步化简,化简后可能能找到简单一点的通项公式。
  1. RecurrenceTable[{a[
  2.      n] == ((2 n + 3) a[n - 1] + (2 n - 3) a[n - 2])/(2 n), a[1] == 1,
  3.     a[2] == 5/4}, a, {n, 1, 24}]
  4. r1 = %// N
  5. Sol = DSolve[{2 (x^2 + x - 1) y'[x] + (x + 5) y[x] + 12 == 0,
  6.     y[0] == -2}, y[x], x] // Simplify
  7. f[x_] = y[x] /. Sol;
  8. r2 = Table[SeriesCoefficient[f[x], {x, 0, n}], {n, 1, 24}] // N // Flatten
  9. Equal[r1, r2] (* 判断结果是否相等 *)
Copy the Code
{1., 1.25, 2.375, 4.04688, 6.92344, 11.6895, 19.6342, 32.8133, 54.644, 90.7318, 150.297, 248.474, 410.099, 675.891, 1112.57, 1829.4, 3005.22, 4932.6, 8089.98, 13259.4, 21718.6, 35554.8, 58175.7, 95144.3}

1

Threads

153

Posts

1088

Credits

Credits
1088

Show all posts

Infinity Posted at 2019-12-30 17:58:12
验证微分方程级数解是母函数:
  1. AsymptoticDSolveValue[{2 (x^2 + x - 1) y'[x] + (x + 5) y[x] + 12 == 0,
  2.    y[0] == -2}, y[x], {x, 0, 24}]
  3. % // N
Copy the Code

1

Threads

153

Posts

1088

Credits

Credits
1088

Show all posts

Infinity Posted at 2019-12-30 18:06:13
Last edited by hbghlyj at 2025-3-22 23:53:13n趋于无穷时,$a_n$的渐近表达为
  1. AsymptoticRSolveValue[
  2. a[n] == ((2 n + 3) a[n - 1] + (2 n - 3) a[n - 2])/(2 n),
  3. a[n], {n, Infinity, 1}]
Copy the Code
\[C_1 n^{\frac{3 \left(-\sqrt{5}-5\right)}{10 \left(\sqrt{5}-1\right)}} \left(\frac{3 \left(-\sqrt{5}-19\right)}{40 \left(3 \sqrt{5}-5\right) n}+1\right) \left(\frac{1}{2} \left(1-\sqrt{5}\right)\right)^n+C_2 n^{\frac{3 \left(5-\sqrt{5}\right)}{10 \left(\sqrt{5}+1\right)}} \left(\frac{3 \left(19-\sqrt{5}\right)}{40 \left(3 \sqrt{5}+5\right) n}+1\right) \left(\frac{1}{2} \left(\sqrt{5}+1\right)\right)^n\]

3147

Threads

8497

Posts

610K

Credits

Credits
66183
QQ

Show all posts

hbghlyj Posted at 2025-3-22 23:53:32
Infinity 发表于 2019-12-30 10:06
n趋于无穷时,$a_n$的渐近表达为
如何证明

手机版Mobile version|Leisure Math Forum

2025-4-21 01:29 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list