|
简记 $\displaystyle S_n=\sum_{i=1}^na_i$,则 $a_{n+1}=a_n+\dfrac1{S_n}.$ 平方得:
$$a_{n+1}^2=a_n^2+\dfrac{2a_n}{S_n}+\dfrac1{S_n^2}$$
显然 $\{a_n\}$ 单调增,因此 $S_n\leqslant na_n$。结合上式即有:
$$a_{n+1}^2-a_n^2\geqslant\dfrac{2a_n}{S_n}\geqslant\dfrac2n$$
求和可知 $a_n^2=\Omega(\ln n)$,因此 $a_n^2$ 发散。可应用 Stolz 定理:
$$\begin{aligned}
\lim_{n\to+\infty}\dfrac{a_n^2}{\ln n}
&=\lim_{n\to+\infty}\dfrac{a_{n+1}^2-a_n^2}{\ln(n+1)-\ln n}\\
&=\lim_{n\to+\infty}\dfrac{\frac{2a_n}{S_n}+\frac1{S_n^2}}{\ln(1+\frac1n)}\\
&=\lim_{n\to+\infty}\left(\underbrace{\dfrac{2na_n}{S_n}}_{\Omega(1)}+\underbrace{\dfrac n{S_n^2}}_{O(\frac1n)}\right)\underbrace{\dfrac1{n\ln(1+\frac1n)}}_{\to1}\\
&=\lim_{n\to+\infty}\dfrac{2na_n}{S_n}\\
&=2\lim_{n\to\infty}\dfrac{(n+1)a_{n+1}-na_n}{a_{n+1}}\\
&=2\lim_{n\to\infty}\left(1+n\cdot\dfrac{a_{n+1}-a_n}{a_{n+1}}\right)\\
&=2\lim_{n\to\infty}\left(1+\underbrace{\dfrac n{S_n}}_{O(1)}\cdot\underbrace{\dfrac1{a_{n+1}}}_{o(1)}\right)\\
&=2.
\end{aligned}$$ |
|