Forgot password?
 Create new account
View 136|Reply 1

[数列] 一道数列相关的极限问题

[Copy link]

5

Threads

4

Posts

64

Credits

Credits
64

Show all posts

ZhuYue286 Posted at 2024-5-7 20:04:37 |Read mode
对数列$\left\{ a_n \right\}$有$a_1>0$,且
\[a_n=a_{n-1}+\frac{1}{a_1+a_2+\cdots +a_{n-1}}\]
证明:
\[\lim_{n\rightarrow \infty} \frac{a_{n}^{2}}{\ln n}=2\]
$($来自网络$)$

4

Threads

30

Posts

815

Credits

Credits
815

Show all posts

ic_Mivoya Posted at 2024-5-7 22:05:46
简记 $\displaystyle S_n=\sum_{i=1}^na_i$,则 $a_{n+1}=a_n+\dfrac1{S_n}.$ 平方得:
$$a_{n+1}^2=a_n^2+\dfrac{2a_n}{S_n}+\dfrac1{S_n^2}$$
显然 $\{a_n\}$ 单调增,因此 $S_n\leqslant na_n$。结合上式即有:
$$a_{n+1}^2-a_n^2\geqslant\dfrac{2a_n}{S_n}\geqslant\dfrac2n$$
求和可知 $a_n^2=\Omega(\ln n)$,因此 $a_n^2$ 发散。可应用 Stolz 定理:
$$\begin{aligned}
\lim_{n\to+\infty}\dfrac{a_n^2}{\ln n}
&=\lim_{n\to+\infty}\dfrac{a_{n+1}^2-a_n^2}{\ln(n+1)-\ln n}\\
&=\lim_{n\to+\infty}\dfrac{\frac{2a_n}{S_n}+\frac1{S_n^2}}{\ln(1+\frac1n)}\\
&=\lim_{n\to+\infty}\left(\underbrace{\dfrac{2na_n}{S_n}}_{\Omega(1)}+\underbrace{\dfrac n{S_n^2}}_{O(\frac1n)}\right)\underbrace{\dfrac1{n\ln(1+\frac1n)}}_{\to1}\\
&=\lim_{n\to+\infty}\dfrac{2na_n}{S_n}\\
&=2\lim_{n\to\infty}\dfrac{(n+1)a_{n+1}-na_n}{a_{n+1}}\\
&=2\lim_{n\to\infty}\left(1+n\cdot\dfrac{a_{n+1}-a_n}{a_{n+1}}\right)\\
&=2\lim_{n\to\infty}\left(1+\underbrace{\dfrac n{S_n}}_{O(1)}\cdot\underbrace{\dfrac1{a_{n+1}}}_{o(1)}\right)\\
&=2.
\end{aligned}$$

手机版Mobile version|Leisure Math Forum

2025-4-21 19:03 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list